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Abstract 

 The development of theoretical computational methods and their application has 

become widespread in the world today. In this dissertation, I present my work in the creation 

of models to detect and describe complex biological and health related problems. The first 

major part of my work centers around the creation and enhancement of methods to calculate 

protein structure and dynamics. To this end, substantial enhancement has been made to the 

software package REDCRAFT to better facilitate its usage in protein structure calculation. The 

enhancements have led to an overall increase in its ability to characterize proteins under 

difficult conditions such as high noise and low data density. Secondly, a database that allows 

for easy and comprehensive mining of protein structures has been created and deployed. We 

show preliminary results for its application to protein structure calculation. This database, 

among other applications, can be used to create input sets for computational models for 

prediction of protein structure. Lastly, I present my work on the creation of a theoretical model 

to describe discrete state protein dynamics. The results of this work can be used to describe 

many real-world dynamic systems. The second major part of my work centers around the 

application of machine learning techniques to create a system for the automated detection of 

smoking using accelerometer data from smartwatches. The first aspect of this work that will 

be presented is binary detection of smoking puffs. This model was then expanded to perform 

full cigarette session detection. Next, the model was reformulated to perform quantification of 

smoking (such as puff duration and the time between puffs). Lastly, a rotational matrix was 

derived to resolve ambiguities of smartwatches due to position of the watch on the wrist.  
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Introduction 
 

From the cars that we drive to the watch that we wear on our wrists, the world today is 

dominated by computers. This new technological age relies heavily on the algorithms and 

hardware that run these systems. In addition, the application of computer science is quickly 

spreading to every field, whether it be biochemists using sequence alignment algorithms 

or psychologists needing to analyze complex datasets. In response to this new demand, the 

field of computer science has evolved. There are now three major components of computer 

science: theory, computational or algorithmic development and the application of computer 

science, specifically artificial intelligence (AI). Whereas my interest has spanned all three 

of these areas, the work that I present here focusses more on the last two components: 

algorithmic design or taking theory and implementing it to solve real-world problems, and 

the application of artificial intelligence specifically in the realm of biological and health 

related problems.  

Over three decades of research conducted internationally, have concluded that 

complete models of human health and diseases must comprise complex interactions of 

biological, behavioral, and environmental factors. Biological interactions can be measured 

on three main levels: molecular, systems and holistic. The study of molecules presents a 

unique challenge for the development of algorithmic solutions as well as applications of 

AI. A specific type of molecule, macromolecules, are responsible for many of the body’s 

vital functions. Many technical advances have pushed the study of biological systems 
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forward[1, 2], however there is still room for additional improvements. For instance, the 

study of protein structure and dynamics is inherently limited by the traditional experimental 

methods of characterizing protein structure and dynamics. Specifically, proteins that 

undergo dynamics (which may be essential to carry out their function) are not able to be 

adequately studied by the “gold standard” of structure determination, x-ray 

crystallography. To overcome this limitation, other experimental methods have been 

developed. One such method, Nuclear Magnetic Resonance spectroscopy (or NMR) has 

shown great promise in its ability to collect data that does not only allow for 

characterization of high-resolution protein structures, but also the characterization of 

dynamics. However, due to the complexities of the data collected, NMR has not yet 

realized its full potential in the study of proteins. In these instances where experimental 

methods are limited, computational methods can be developed to help fill the knowledge 

gap. A more complete understanding of protein structure and dynamics could have 

profound effects in the characterization of diseases and development of treatments. 

Therefore, the first focus of this work is to address existing gaps in the study of 

macromolecules, especially proteins.  

While there have been substantial technological advances in studying the biological 

and environmental basis of diseases, there have been relatively minor advances in 

technologies for characterizing human behavior, especially in context. Given the 

relationship between environmental factors and human behavior, it can be argued that 

better understanding of the contextual and social aspects of behavior will lead to more 

effective and personalized interventions to promote healthier behaviors, such as smoking 

cessation, weight loss, and exercise. For example, cigarette addiction is a chronic, relapsing 
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brain disorder and remains the leading preventable cause of death and disability in the US 

and costs nearly $200 billion each year. Although ~20% of adults in the USA currently 

smoke, the majority want to quit, and among those that make a quit attempt, the majority 

relapse. Human behavioral and neuroimaging studies in the laboratory have been the 

predominant method for studying smoking behavior, i.e., smoking in the lab or prediction 

of self-reported relapse in real word contexts. Methods for characterizing precipitants to 

and engagement in smoking behavior outside the laboratory remains under-developed. 

Traditional approaches to the study of human behavior are limited to self-reporting or 

laboratory observations. While both research approaches have provided substantial insight 

into behavior, they suffer from some inherent limitations. Self-reporting is limited by recall 

bias and social desirability, among other issues that reduce internal and external validity. 

While laboratory-based studies are usually designed to overcome such biases, they may 

lack “ecological validity,” or the findings may fail to generalize to real-world settings. 

Because of this restricted insight about behavior, interventions to promote healthy behavior 

often fail. Therefore, to address the lacuna of data on factors influencing behavior, enabling 

participatory technologies need to be developed to allow non-intrusive and continuous 

observation of behavior in context and in natural settings. Mobile devices, which are widely 

used and include a rich array of sensors, can be a powerful platform for the development 

of methods for studying and influencing behavior.  

Reports indicate more than 80% of the adults residing in urban areas in the US possess 

smartphones (>60% in rural areas). In the meantime, the sales and use of smartwatches 

have monotonically increased in the US and the world, indicating some certainty about 

their continued growth and use nationally and internationally. Relinquishing the need for 
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any wired infrastructure is especially helpful in less developed countries and rural areas. In 

addition, the use of smart devices is not confined to any particular socioeconomic class. 

Therefore, the use of smart and wearable devices for sensing and delivery of intervention 

approaches has the potential for international deployment without socioeconomic, 

political, or geographical barriers. 

While these mobile technologies have pervaded and revolutionized much of our social 

and private lives, their utilization in healthcare remains sparse. Although the use of smart 

devices and web-based study of behavior have gained traction in recent years, additional 

human studies need to be conducted to establish the efficacy and usability of such devices 

in the study of behavior in natural settings. Effective use of these devices in health-

promotion requires solving the following crucial problem: how to continuously monitor 

and characterize behavior in a way that will be accurate, complete, unobtrusive, relevant, 

personalized, and initiate the optimal intervention method. To this end, enabling 

technologies can be developed to allow real-time remote sensing of data collected from 

participants and interpreted by an artificial intelligence.   

Solving these challenges call for usage of all three main components of computer 

science. First, a theoretical understanding and formulation of the problem must be 

established. Next, design of algorithms that models this formulation to solve specific 

problems. Finally, the incorporation of AI techniques to enhance the results achieved from 

the application of the model. The first objective of this work was to develop methods of 

analyzing data from NMR spectroscopy to predict both structure and dynamics of proteins. 

The second objective was to eliminate the barriers standing in the way of employing 

modern technology to monitor and study human behavior in situ, passively, accurately, and 
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intelligently. Developments will also establish the foundation to initiate automated and 

just-in-time interventions as needed.  

The work presenting in this dissertation is structured into two distinct, but related parts. 

Both parts utilize various aspects of computer science to solve a variety of biological and 

health-related problems. Part 1 presents and details my contributions to the problem of 

solving protein structure and dynamics. My contributions can be broadly summarized as 

follows: 

• Substantial improvements were made to the existing software package 

REDCRAFT including enhancement to its decimation routine, creation of a 

graphical user interface, refactoring of the base code to meet industry standards, 

and incorporation of dihedral angle restraints mined from a newly created database. 

All of these improvements have led to an improved user experience as well as an 

increase its ability to accurately characterize protein structure in a reasonable time 

scale.  

• The protein databank (PDB) was dissected and used to create the PDBMine 

database. This database allows for easy and flexible mining of the data contained 

within over 400,000 protein structures. The results from various queries of this 

database have been shown to greatly enhance protein structure prediction methods.  

• A method for characterizing atomic-level description of discrete state dynamics of 

proteins was created and tested using a variety of models. This model showed 

success on 2-state and 3-state models with motions as small at 15 degrees and rates 

of occupancy as low as 10 percent.   

Part 2 of this document presents my work in the creation of automated systems to detect 
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smoking using smartwatch technology and AI. My contributions to this end can be broadly 

summarized as follows:  

• An artificial neural network was used to create a predictive model to perform binary 

classification of a smoking puff using accelerometer data from a smartwatch. This 

model was tested on a variety of different non-smoking gestures and was able to 

detect smoking with over 80% accuracy.  

• A theoretical model of a smoking session was established and, in combination with 

an artificial neural network, was used to study a cohort of 10 smokers. The system 

achieved over 90% accuracy in the detection of smoking sessions while maintaining 

a low false positive rate (<2%). The theoretical model of smoking serves as the first 

of its kind. It and the ANN were incorporated into a smartwatch application, 

ASPIRE, aimed at promoting cessation.  

• The efficacy of using a smartwatch-based application instead of the expensive 

CReSS device to measure smoking topography such as puff duration and inner puff 

interval was investigated. The smartwatch-based application included an ANN that 

detects the following mini-gestures: hand-to-mouth, hand-on-mouth, hand-off-

mouth and non-smoking. Based on the mini gestures detected, smoking 

topographies are measured. The various measured topographies exhibited R2 values 

ranging from 0.7-0.98 when compared to measurements taken from the CReSS 

device. 

• The issue of rotational ambiguities arising from the position of the smartwatch on 

the wrist was resolved by deriving a set of Euler rotations. This rotation matrix was 

tested with six of the most probably positions of a watch on the wrist.  
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Each part of this document starts with an introductory chapter, followed by a chapter 

containing a short description of each research objective and all pertinent publications and 

is concluded with a summarization of the major results from each part. 
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Chapter 1: Introduction to Protein Structure and Dynamics 

 The following subsections describe a brief overview of concepts vital to the 

understanding of the work presented. The following concepts will be covered: protein 

structure, existing methods for characterization of proteins, residual dipolar couplings 

(RDCs) as well as an overview of existing methods that utilize RDCs.  

1.1 Proteins  

 Proteins are a class of polypeptides that perform various functions in cells including 

structural support, enzymatic activities, cell signaling, and many more. Production and 

retention of proteins is crucial for life in all organisms. The three-dimensional structure of 

a protein, or its “fold”, is one factor in determining how a protein functions. Structural 

variations can lead to disruption of a protein’s ability to function. These disruptions have 

been shown to cause a variety of diseases. In addition to the overall structure of a protein, 

some proteins undergo dynamics (hTS, DHFR, Hemoglobin, Myoglobin, MBP, SRD10 to 

name a few). In many cases, this motion is crucial for the protein to adequately function 

while in others, the internal dynamics of the protein marks the on-set of a disease.  

Three dihedral angles, phi (ɸ), psi (Ѱ), and omega (Ω), define the structural variability 

of the protein backbone (shown in red in Figure 1.1) at each amino acid.  
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Figure 1.1 An example backbone of an amino acid is shown (red). 

The collective effect of these torsion angles defines the overall structure of a 

protein. Due to the biophysical properties of the peptide bond, the Ω torsion angle is 

generally fixed at 180° (or occasionally 0°). Therefore, the effective degrees of freedom 

at any given amino acid are ɸ and Ѱ. 

1.2 Existing Methods of Structure Calculation/Characterization of Dynamics 

There are three main methods of protein structure determination and characterization of 

dynamics: x-ray crystallography, NMR spectroscopy, and computational methods. The 

first two methods are performed in a “wet” lab setting. Computational methods, on the 

other hand, are conducted in-silico and comprise of many different techniques including 

ab initio, threading and model-based. As stated previously, some proteins undergo 

dynamics that is critical in their function. Therefore, study of a particular protein must 

always include a study of any potential internal dynamics within the structure. Several 

studies have shown that ignoring the potential dynamics of a protein could lead to 

prediction of an erroneous structure[3-5].  

X-ray crystallography is the “gold standard” of protein structure calculation. In this 

method the protein is desiccated in a crystalline setting and characterized. Whereas this 

method has led to many high-quality structures, it has some inherent limitations. First, the 
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decimation process is often very time consuming and therefore expensive. Some types of 

proteins, such as proteins embedded in structures such as the cellular membrane, are not 

able to be characterized in this way. In addition, proteins with dynamics are unable to be 

characterized due to the fact that in order for successful characterization the structure must 

be completely immobilized. Despite this limitation, some dynamical proteins have been 

studied by x-ray crystallography by artificially “locking” the protein into each 

configuration. However, by artificially locking the protein into various states has several 

practical limitations.  

An alternative experimental approach is NMR spectroscopy in which the protein is 

suspended in a more native, liquid environment. The traditional data that is acquired from 

NMR are called NOEs, an acronym for Nuclear Overhauser Effect. These are distance 

restraints between pairs of atoms. These distance restraints are then used with a variety of 

programs to calculate protein structure. This method also results in high-quality structures, 

very similar to x-ray structures. However, NOE data on its own is not sufficient to 

determine the motion of proteins, but another restraint, residual dipolar couplings, collected 

via NMR holds the promise of being able to provide both a high-quality description of 

protein structure as well as any dynamics it is undergoing. Figure 1.2 shows the sensitivity 

of RDCs over NOEs. In this figure, the y-axis represents fitness to experimental data and 

the x-axis represents structural similarity to a target structure. Note that structural similarity 

of under 5 angstroms is generally considered to be significant. All dots represent a distinct 

variation of a protein structure. These structures were generated from a seed structure by 

randomly altering its structure. The blue dots represent the structural similarity of the 

mutant structures to the seed structures as a function of RDC fitness (or how well the data 
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fits the structure). The red dots represent the structural similarity of the same mutant 

structures as a function of the NOE fitness. Notice that the RDC fitness converges much 

more quickly than that of the NOE fitness. This indicates that a structure over 7 angstroms 

away from the target structure has the same NOE fitness as one that is within 1 angstrom 

of the true structure. This could cause NOE-based calculations to mistakenly choose the 

wrong structure due to its good fitness to the data. As shown in the figure, this differs with 

RDCs. A structure that is over 7 angstroms away from the native structure has very poor 

fitness score and therefore would not be chosen as the true structure in a blind study.  

 

Figure 1.2. Sensitivity of NOEs versus RDC restraints. 

 The final class of approaches to protein structure modelling and characterization of 

dynamics is computational methods. These approaches are appealing for many reasons 

mainly a substantial decrease in cost and time required for completion. There are three 

main types of methods: model-based, threading and ab initio. In model-based structure 
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calculation, a pre-existing protein structure is used as a starting point. The structure is then 

refined based on energy calculations or fitness to experimental data. This method makes 

the assumption that a similar structure is available that can be used as a starting point. For 

novel structures, this is rarely the case. Threading methods improve on this process by 

partitioning the protein into smaller sequences and then finding model fragments from 

existing structures. When enough of these structures are found then they are combined, or 

“threaded” together to create the full structure. This method does not assume a full model 

structure is available but does assume that the individual fragments exist. This is more 

likely than finding the full structure but is still difficult in some instances. Ab initio 

methods are the most computationally demanding of the three. They attempt to characterize 

the structure of a protein by using only the sequence of the protein and minimal additional 

information such as a description of physical forces and a sparse set of experimental data. 

No additional assumptions are made.  

1.3 Residual Dipolar Couplings 

RDCs arise from the interaction of two magnetically active nuclei in the presence 

of the external magnetic field of an NMR instrument. This interaction is normally reduced 

to zero due to the isotropic tumbling of molecules in their aqueous environment. However, 

the introduction of partial order to the molecular alignment by minutely limiting their 

isotropic tumbling will reintroduce the finite RDC interactions. The resulting RDCs are 

measured relatively easily and represent an abundant source of precise and informative 

data which includes the relative orientation of different internuclear bonds within the 

alignment frame. An RDC can be calculated for a given set of atoms using the Equation 

(1.3.1) where Dmax and rij are constants calculated using the properties of the atoms 
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involved, vij is the calculated vector between atom i and j, and S is the order tensor given 

in Equation (1.3.2).  

 

RDCs have been shown to be potentially instrumental in structural characterization 

of aqueous proteins[6] and other challenging proteins, while enabling simultaneous study 

of structure and dynamics of proteins[7, 8]. Because RDCs can be used to characterize the 

structure and dynamics of challenging proteins, it presents a viable, cost-effective method 

with the benefit of producing rapid, comprehensive and automated results. However, 

despite their potential, only a handful of protein structures submitted to the Protein 

DataBank[9] (PDB) have been determined exclusively by RDC data. Of this scarce number 

of proteins, a significantly high number of them have utilized far more RDCs than 

necessary[7, 10] therefore mitigating the advantages of using RDCs. Other approaches 

utilize less RDCs by resorting to use of other information such as NOE and hydrogen bond 

restraints[11] for successful structure determination. The primary contributing factor for 

the failure to realize the full potential of RDCs is the lack of analysis strategies capable of 

extracting the pertinent information from RDCs. 

1.4 Previous Work in Utilizing RDCs in Calculation of Protein Structure and 

Dynamics 

 Due to their high potential to solve both structure and accurately characterize 

dynamics, the need for software that can analyze RDC data and extract useful information 

𝐷𝑖𝑗 = (
𝐷𝑚𝑎𝑥

𝑟𝑖𝑗
3 ) 𝑣𝑖𝑗 . 𝑆. 𝑣𝑖𝑗

𝑇   (1.3.1) 

𝑆 = [

𝑠𝑥𝑥 𝑠𝑥𝑦 𝑠𝑥𝑧
𝑠𝑥𝑦 𝑠𝑦𝑦 𝑠𝑦𝑧
𝑠𝑥𝑧 𝑠𝑦𝑧 𝑠𝑧𝑧

], 𝑣𝑖𝑗 = (

cos(𝜃𝑥)
cos(𝜃𝑦)

cos(𝑧)
) (1.3.2) 
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is paramount. Computational approaches such as CHARMM[12], AMBER[13], 

GROMACS[14], or NAMD[15] provide simulations of molecular dynamics (MD). These 

platforms incorporate nearly all of the understood biophysical forces at the atomic level 

and have incorporated some rudimentary form of RDC restraints. However, these platforms 

are generally incomplete and therefore consistently report that structure calculation from 

RDCs alone is improbable. A few methods exist that allow for structure calculation from 

RDCs alone, or at least that rely more heavily on RDC data. These methods have shown 

minor successes in the calculation of small protein structures (< 60 residues). In addition, 

some of the MD simulation software that have incorporated RDCs have been able to utilize 

them for characterization of dynamics under some favorable conditions. In order to perform 

this characterization, proteins are subjected to long simulations. The results of these 

simulations are a collection of structures called an ensemble. These structures are then 

clustered, and a representative structure is taken from each cluster as a conformational 

state. Whereas these simulations can yield plausible results, they have been demonstrated 

to be successful under extremely circumstantial conditions. Furthermore, these approaches 

are time-consuming and are not applicable to all proteins, for example large proteins, due 

to the complexity of their structures. One potential alternative to characterization of 

dynamics is to develop an RDC based model of dynamics in which the relative order of 

two domains of a protein is compared and then related to one another as a dynamic 

ensemble. Due to the inherently precise orientation information that exists in RDC data, it 

is hypothesized that such an endeavor will be possible.  

The software package REDCRAFT[16, 17] has been previously developed in the 

Valafar Group and employs RDCs to calculate protein structures and sets itself apart from 
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other existing software packages by deploying a new and more efficient search mechanism. 

As a result, REDCRAFT can achieve the same structure determination outcome as other 

methods with less data. REDCRAFT is designed for structure determination primarily from 

RDC restraints and it sets itself apart from other approaches in a number of ways. 

REDCRAFT is able to accomplish this improvement by analyzing a given molecule 

through rigid peptide planes which adhere to strict peptide geometry. Therefore, all 

variations within a molecule are described through backbone torsion angles (ɸ, Ѱ). In terms 

of computation, this significantly reduces the number of variables, translating to a 

reduction in the dimensionality of the search space and improvements in program 

execution time. It also contributes to the program’s robustness, allowing for fragmented 

study of protein structures when segments of data are erroneous or missing. Applications 

of REDCRAFT have been demonstrated using aqueous[18, 19] and membrane[20] 

proteins with as little as two RDCs per residue. Yet another advantage afforded by the 

publicly available REDCRAFT software package is its development using a sound Object 

Oriented (OO) programming paradigm that is easily extendable. This lends itself well to 

encapsulation of physical and biophysical properties of proteins since construction of a 

Polypeptide object, from more fundamental Residue and Atom objects, directly reflects the 

natural process of protein polymerization. It also allows for better program source code 

readability and more efficient program development, while further contributing to 

improvements in execution time. 

 The first stage of REDCRAFT is of vital importance to the success of structure 

calculation. In this stage a list of possible dihedral angles is generated for the given amino 

acid sequence. Each possibility on this list is then ranked based on the structural fitness of 
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the local RDC data. From there the protein elongation process begins. Due to the robustness 

of the REDCRAFT algorithm, there are some instances where even if the true dihedral 

angles are not present in the list for a given residue, there is a possibility of recovery if 

there are enough RDCs present for residue. However, in large proteins only sparse sets of 

RDCs can be collected. Therefore, a more informed way of generating potential dihedral 

candidates will increase the capability of REDCRAFT to calculate larger, more complex 

proteins. Experimentally, dihedral angle restraints can be obtained using NMR. The 

program TALOS[21] can decipher this data and creating estimates of local dihedral angles. 

Although the angles produced by TALOS have been shown to be fairly accurate, it requires 

additional time and effort to collect more data. Data mining techniques can be potentially 

used as a substitute the angles generated by TALOS in structure calculation.  

1.5 Research Objectives 

The research objectives for this work are to 1) improve the usability of the 

REDCRAFT software package, 2) develop a data mining-based approach for the 

calculation of dihedral restraints and 3) create an analytical model of characterizing protein 

dynamics. The following subsections describe more details about each research objective. 

1.5.1 - Improving the Usability of REDCRAFT 

 Historically, REDCRAFT has utilized a text-based UI and has been limited to just 

the Linux/Unix operating systems. While the text-based UI is fairly complete, lack of a 

graphical UI or GUI has limited the widespread adoption of the method among non-

computer scientists, many of whom are accustomed to interacting with a GUI in the 

Windows environment. Therefore, the first task in improving the usability of REDCRAFT 

was to design and implement a GUI. The platform for development was QT5 due to its 



www.manaraa.com

 17 

cross-platform availability. In addition, cmake was incorporated to make compilation 

across different systems as seamless as possible. The second improvement was to modify 

the format of the RDC data that is used by the software. The format style used by the 

previous version of REDCRAFT was too customized and did not allow for a more flexible 

set of RDCs to be used. In order to make the program more flexible in this sense, the format 

was changed to be in the NMR Exchange Format[22] (NEF). NEF is the internationally 

accepted data exchange format in the NMR community that will make creation of pipelines 

of NMR software seamless. In addition to making REDCRAFT more accessible to the 

NMR community, the NEF format also allows for a more flexible set of RDCs to be defined 

and used. The previous version of REDCRAFT only accepted six different RDC vectors 

that were hardcoded into the rigid input format. Alternatively, a NEF input file lets the user 

define the exact atoms that are involved in the RDC interaction allowing for different RDC 

vectors to be incorporated. Minor modifications to the REDCRAFT code were also made 

to ensure that the current model of a “residue” contains all the atoms for which the 

experimental RDCs are reported. To assess the modifications to the computational core, a 

detailed performance analysis was performed that measured the runtime, accuracy and 

space requirements before and after the changes. In addition, the new version of 

REDCRAFT was presented at various conferences in the NMR community in the form of 

poster presentations. The results of this work are reported in the section titled “2.1 

Increased Usability, Algorithmic Improvements and Incorporation of Data Mining for 

Structure Calculation of Proteins with REDCRAFT Software Package” that is accepted, 

awaiting publication in the BMC Bioinformatics journal.  
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1.5.2 - Data Driven Dihedral Angle Restraints 

 The second research objective was to improve the initial stage of the REDCRAFT 

algorithm by generating better predictions of starting points for the dihedral angles of each 

residue. To accomplish this task, existing databases of structures will be leveraged. The 

Protein DataBank (PDB) currently houses the atomic coordinates of around 150,000 

protein structures. However, there was no easy way to extract information about the 

dihedral angles of these proteins. Therefore, the data contained in these structures were 

downloaded and transformed to create a minable database (PDBMine), in which data such 

as dihedral angles for a given fragment of residues can be easily extracted. Once the data 

transformation was complete, the Stage-I of REDCRAFT’s algorithm was modified to be 

able to extract the information out of the database and create dihedral restraint files. 

Theoretically, a better starting point should yield a better result (one that is closer to the 

native structure). Structure calculation was performed on a collection of proteins varying 

in size and complexity both with, and without the inclusion of dihedral restraints. In all 

cases it was found that inclusion of the restraints mined from PDBMine quality of 

structures computed by REDCRAFT as well as allowed for calculation of structures using 

sparse datasets that are unheard of in the community of RDC-based researchers. The results 

of this work are reported in the section titled “2.2 PDBMine: A Reformulation of the 

Protein Data Bank to Facilitate Structural Data Mining” that was an accepted manuscript 

to the IEEE CSCI Conference in 2019. Additional results are also given in section 2.1 under 

the subheading: “Incorporation of Data-Driven Dihedral Restraints”.  
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1.5.3 - Creation of RDC-based Model of Protein Dynamics 

 The research objective was to accurately characterize discrete state dynamic models 

of proteins to the atomic level. This objective required three main steps. The first step was 

to accurately identify existence and mode of dynamics within a given protein. REDCRAFT 

was uniquely poised to accomplish this task due to its iterative elongation process. In 

theory, when a protein is being constructed with REDCRAFT the RDC fitness to the 

structure should grow at a steady rate and then plateau at a level consistent with the level 

of the experimental error in the data. However, when dynamics exists in a protein the RDC 

data that is collected is perturbed and there is an “averaging” of data between the multiple 

states, or conformations. In this case, when structure characterization is performed, 

assuming a single rigid structure, a spike in RDC fitness will be observed at the point in 

which the dynamics begins to alter the RDC data. The fitness of RDC data with respect to 

the residue number served as a profile of dynamics (dynamic-profile). This profile was 

investigated to ascertain its ability to characterize the different structural modes of 

dynamics, namely: temporal and structural. Along the structural mode of dynamics there 

are two categories of rigid-body and uncorrelated modes. Similar to previous 

definitions[23, 24], rigid-body dynamics is defined as dynamical regions that maintain a 

constant internal structure as a function of time, while the uncorrelated dynamics is defined 

as alteration of structure as a function of time. Therefore, it is meaningful to describe the 

structure of a dynamical region if it is engaged in a rigid-body dynamics, and not so for an 

uncorrelated mode of dynamics. The temporal dimension of dynamics can be defined by 

two categories of discrete-state and continuous-state dynamics. The distinction between 

the two is solely based on the temporal occupancy of conformational states that are visited 
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during the trajectory of the dynamics. In principle all four combined modes of dynamics 

should be possible with examples of all four combination of structural and temporal modes 

of dynamics having already been identified and presented in the literature. However, the 

combination of rigid-body, discrete-state dynamics represents the biologically most likely 

event and was therefore targeted in this work. It should also be noted that the remaining 

three modes (combinations of structural and temporal modes) can be approximated as a 

rigid-body and discrete-state dynamics in some favorable instances which makes this mode 

of dynamics all the more important to properly study. 

After correctly identifying the regions of dynamics, the second step was to perform 

a fragmented characterization of the protein in which a portion of the static region was 

characterized separately from the dynamical region. In the final step, order tensors were 

calculated for each of the fragments and analytically compared to reconstruct the relative 

orientation of the n states, or conformations, of the protein.  

The evaluation of this objective relied on simulated RDC data from distributions of 

closed and open states. Simulated data allowed for proper assessment of the algorithm 

against “ground truth” dynamic structures. They allowed precise quantification of the 

accuracy of the developments and helped to establish the limitations of the proposed 

approach as a funciton of experimental noise, missing data, and degenerecies of order 

tensors. Simulated data also allowed the investigation of the sensitivity of the approach 

with respect to all relevant parameters, including the quality of data, magnitude of motion, 

and level of occupancy. In addition to simulated models of dynamics, synthetic data was 

generated from experimentally confirmed models of dynamics. The method was then be 

tested on these real systems and accessed for accuracy in comparision to the published 
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models. The results of this work are reported in the section titled “2.3 Structure Calculation 

and Reconstruction of Discrete State Dynamics from Residual Dipolar Couplings” that was 

an accepted manuscript to the Journal of Chemical Theory and Computation (JCTC) in 

2016.
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Chapter 2: Contributions to the Study of Protein Structure and Dynamics1 
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Section 2.1: Casey A. Cole, Caleb Parks, Julian Rachele and Homayoun Valafar. 

Accepted by BMC Bioinformatics. Reprinted here with permission of publisher.  

Section 2.2: Casey A. Cole, Christopher Ott, Diego Valdes and Homayoun Valafar. 2019. 

Proceedings of 2019 IEEE International Conference on Computational Science & 

Computational Intelligence (IEEE CSCI). Reprinted here with permission from the 

publisher. See IEEE copyright: https://www.ieee.org/publications/rights/copyright-

policy.html © 2019 IEEE 

Section 2.3: Casey A. Cole, Rishi Mukhopadhyay, Hanin Omar, Mirko Hennig, and 

Homayoun Valafar. 2016. Published by J. Chem. Theory Comput. Reprinted here with 

permission of publisher.  
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2.1 Increased Usability, Algorithmic Improvements and Incorporation of Data 

Mining for Structure Calculation of Proteins with REDCRAFT Software Package 

2.1.1 Abstract 

Traditional approaches to elucidation of protein structures by Nuclear Magnetic 

Resonance spectroscopy (NMR) rely on distance restraints also known as Nuclear 

Overhauser effects (NOEs). The use of NOEs as the primary source of structure 

determination by NMR spectroscopy is time consuming and expensive. Residual Dipolar 

Couplings (RDCs) have become an alternate approach for structure calculation by NMR 

spectroscopy. In previous works, the software package REDCRAFT has been presented as 

a means of harnessing the information containing in RDCs for structure calculation of 

proteins. However, to meet its full potential, several improvements to REDCRAFT must 

be made. In this work, we present improvements to REDCRAFT that include increased 

usability, better interoperability, and a more robust core algorithm. We have demonstrated 

the impact of the improved core algorithm in the successful folding of the protein 1A1Z 

with as high as ±4Hz of added error. The REDCRAFT computed structure from the highly 

corrupted data exhibited less than 1.0Å with respect to the X-ray structure. We have also 

demonstrated the interoperability of REDCRAFT in a few instances including with 

PDBMine to reduce the amount of required data in successful folding of proteins to 

unprecedented levels. Here we have demonstrated the successful folding of the protein 

1D3Z (to within 2.4Å of the X-ray structure) using only N-H RDCs from one alignment 

medium.  The additional GUI features of REDCRAFT combined with the NEF compliance 

have significantly increased the flexibility and usability of this software package. The 
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improvements of the core algorithm have substantially improved the robustness of 

REDCRAFT in utilizing less experimental data both in quality and quantity.  

2.1.2 Background 

 Faster and more cost-effective methods of characterizing protein structures are of 

paramount importance in the development of personalized medicine. While there have 

been substantial developments in reducing the cost, and increasing the speed of sequencing 

genomic data[25-28], there has been relatively little advances in improving the 

characterization of protein structures[29]. In addition to the existing disparity in genetic 

versus proteomic information, the vast majority of the characterized protein structures 

belong to a very specific and limited category of proteins. For instance, while it has been 

estimated that 30% of the human proteome consists of membrane proteins, this important 

class of proteins is represented by approximately 120 proteins in current databases[30, 31]. 

Such observed disparities are rooted in the lack of new approaches to structure calculation 

that overcomes the existing barriers in structural determination of proteins[32, 33].  

In recent years, the use of Residual Dipolar Coupling (RDC) data acquired from 

Nuclear Magnetic Resonance (NMR) spectroscopy has become a potential avenue for a 

significant reduction in the cost of structure determination of proteins[31]. In addition, 

RDC data have been demonstrated to overcome some long-standing challenges in NMR 

spectroscopy such as structure determination of membrane proteins[20, 34-37], recognition 

of fold families[38] and the concurrent study of structure and dynamics of proteins[5, 7, 

39-45]. Recent work[46-51] has demonstrated the challenges in structure calculation of 

proteins from RDC data alone, and some potential solutions have been introduced [47, 48, 

51-54]. One such approach named REDCRAFT[20, 42, 46] has been demonstrated to be 
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successful in structure calculation of proteins from a reduced set of RDC data (and 

therefore reduced cost). While REDCRAFT has been very successful compared to other 

approaches, it exhibits some limitations that result in reduced usability and flexibility. In 

this work, we present usability and methodology improvements to REDCRAFT that aim 

to address these limitations. To increase the usability, we have incorporated a powerful 

Graphical User Interface (GUI), integrated it with molecular visualization software, and 

adopted the newly approved NMR Exchange Format[22] (NEF), to name a few. 

REDCRAFT’s core methodology has been revised to allow calculation of protein 

structures under challenging conditions. More specifically, we improve the decimation 

routine as well as incorporate new dihedral restraints mined from the PDBMine[55] 

database. To evaluate the updates, we present and discuss structure calculation of proteins 

using novel sets of RDC data that REDCRAFT, under lower signal to noise conditions as 

well as with sparse sets of RDCs. The REDCRAFT package is purely developed in C++ 

according to valid software development principles and is freely available for download 

via Bitbucket repository (https://bitbucket.org/hvalafar/redcraft/).   

2.1.2.1 Residual Dipolar Couplings 

 RDCs can be acquired via NMR spectroscopy and the theoretical basis of their 

interaction had been established and experimentally observed in 1963[56, 57]. RDC data 

has become a more prevalent source of data for structure determination of biological 

macromolecules in recent years due to the availability of alignment media[58] and 

substantial improvements in NMR instruments. Upon the reintroduction of order to an 

isotropically tumbling molecule, RDCs can be easily acquired. The alignment medium can 

impose restricted tumbling through steric, electrostatic, or magnetic interaction with the 
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protein. The RDC interaction between two magnetically active nuclei can be formulated as 

shown in Eq.  (2.1.1). 

𝐷𝑖𝑗 = 𝐷𝑚𝑎𝑥⟨
3𝑐𝑜𝑠2(𝜃𝑖𝑗(𝑡))−1

2
⟩      (2.1.1) 

𝐷𝑚𝑎𝑥 =
−𝜇0𝛾𝑖𝛾𝑗ℎ

(2𝜋𝑟)3
      (2.1.2) 

 In this equation, Dij denotes the residual dipolar coupling in units of hertz between 

nuclei i and j. The θij represents the time-dependent angle of the internuclear vector 

between nuclei i and j with respect to the external magnetic field of the NMR instrument, 

and the angle brackets signify time averaging. In Eq. (2.1.1), Dmax represents a scalar 

multiplier dependent on the physical properties of the two interacting nuclei and is further 

described in Eq. (2.1.2). In this equation, γi and γj are nuclear gyromagnetic ratios of nuclei 

i and j respectively, r is the internuclear distance (assumed fixed for directly bonded 

atoms), h is the modified Planck's constant, and μ0 is the permeability of free space. 

Additional description and alternate formulations of equations 2.1.1 and 2.1.2 can be found 

in the following work[46, 59, 60]. 

2.1.2.2 REDCRAFT Structural Fitness Calculation 

 While generating a protein structure from a given set of residual dipolar couplings 

is nontrivial, it is straightforward to determine how well a given structure fits a set of RDCs. 

REDCRAFT’s core approach utilizes this principle in order to produce a viable protein 

structure. Through algebraic manipulation of Eq. (2.1.1) RDC interaction can be 

represented as shown in Eq. (2.1.3),  

𝐷𝑖𝑗 = 𝑣𝑖𝑗 ∗ 𝑆 ∗ 𝑣𝑖𝑗
𝑇       (2.2.3) 
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where S represents the Saupe order tensor matrix[9] and vij denotes the normalized 

interacting vector between the two interacting nuclei i and j. REDCRAFT takes advantage 

of this principle by quantifying the fitness of a protein to a given set of RDCs (in units of 

hertz) and calculating a root-mean-squared deviation as shown in Eq. (2.1.4). In this 

equation Dij and D'ij denote the computed and experimentally acquired RDCs respectively, 

N, represents the total number of RDCs for the entire protein, and M represents the total 

number of alignment media in which RDC data have been acquired. In this case, a smaller 

fitness value indicates a better structure.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = √∑ 𝑀
𝑗=1 ∑ 𝑁

𝑖=1 (𝐷𝑖𝑗−𝐷′𝑖𝑗)
2

𝑀×𝑁
       (2.1.4) 

 The REDCRAFT algorithm and its success in protein structure elucidation have 

been previously described and documented in detail[20, 46]. Here we present a brief 

overview. REDCRAFT calculates structures from RDCs using two separate stages. In the 

first stage (Stage-I), a list of all possible discretized torsion angles is created for each pair 

of adjoining peptide planes.  This list is then filtered based on allowable regions within the 

Ramachandran space[56]. The list of torsion angles that remain is then ranked based on 

fitness to the RDC data.  These lists of potential angle configurations are used to reduce 

the search space for the second stage.  

 Stage-II begins by constructing the first two peptide planes of the protein. Every 

possible combination of angles from Stage-I between peptide planes i and i+1 are evaluated 

for fitness with respect to the collected data, and the best n candidate structures are selected, 

where n denotes the search depth. The list of dihedral angles corresponding to the top n 

structures is then combined with every possible set of dihedral angles connecting the next 

https://paperpile.com/c/0R6i2m/FswG
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peptide plane to the current fragment. Each of these candidate structures is evaluated for 

fitness and the best n are again selected and carried forward for additional rounds of 

elongation. All combination of dihedral angles worse than the best n are eliminated, thus 

removing an exponential number of candidate structures from the search space. This 

elongation process is repeated iteratively, incrementally adding peptide planes until the 

entire protein is constructed. 

2.1.3 Implementation 

2.1.3.1 Usability Updates to the REDCRAFT Software Package 

 Several changes have been made to the REDCRAFT package to increase usability 

including reorganization, documentation, addition of a graphical user interface as well as 

adoption of NEF standards. These developments are outlined in the following subsections. 

2.1.3.1.1 Reorganization, Documentation and Addition of GUI 

 The initial version of the REDCRAFT software package was only accessible 

through a Linux command line environment. Several changes have been incorporated to 

allow REDCRAFT to be mostly platform-agnostic, and it is now able to be compiled and 

executed on any Linux, BSD, or Unix system, including MacOS. Dependencies have also 

been updated such the latest version of the GNU C Compiler can be used for compilation. 

In addition, CMake[61] was integrated to all for dynamically generated makefiles that are 

suitable for an individual machine.  

 Regardless of the operating system, the command line environment could be 

cumbersome to use, especially for novice users. To create a more streamlined analysis 

pipeline, the project was reorganized to allow all REDCRAFT binaries and scripts to run 

from a single command instead of scattered individual pieces, thereby encapsulating the 
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project and facilitating simpler use. This is accomplished by only including a single binary, 

`redcraft` in the user’s path that acts as command interpreter for the entire REDCRAFT 

project. 

 Additionally, a documentation system was put in place 

(http://redcraft.readthedocs.io/) that allows new documentation to be built and updated 

upon every update to REDCRAFT. This documentation details the steps necessary to 

compile the entire REDCRAFT suite, as well as dependencies. The documentation may be 

easily exported as HTML, DOCX, or PDF document formats for offline reference.  

 Finally, a modern Qt5 GUI system was developed to facilitate the usage of 

REDCRAFT even further. The GUI, written in C++ with Qt5, is fast and available 

uniformly across all platforms. The GUI contains tools to run Stage-I and Stage-II, reads 

config files, and allows for preliminary analysis of output files. Invocation of the GUI is 

performed by running either `redcraft gui` or `redcraft gui [path]` (to immediately launch 

the GUI in that directory).  

2.1.3.1.2 Adherence to NEF Standards 

The previous version of REDCRAFT utilized a rigid file format by allowing the 

analysis of only six specific RDC vectors (per residue) and their corresponding error values 

(example shown in Figure 2.1b). These six RDC classes represented the most prevalently 

collected vectors in the field of NMR at the time of REDCRAFT’s creation. Since then, 

due to advances in instrumentation, introduction of new alignment media, and data 

acquisition techniques, a much wider range of RDCs can be collected to aid in structure 

calculation. To address issues such as this the NMR community introduced the NMR 

Exchange Format[22] (NEF). NEF is a standard for the representation of all NMR restraints 
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and accompanying data. NEF was created from a series of workshops and consultations 

with developers of NMR structure determination software developers to streamline the 

pipeline of structure determination programs. The NEF formulation of RDCs is much more 

flexible in its definitions (an example is shown in Figure 2.1a). NEF lists the name, residue 

number, and residue name of both atoms associated with each RDC along with the RDC 

value and uncertainty. To accommodate the robust possibilities of RDC values that NEF 

could contain, REDCRAFT’s computational engine was expanded to handle any 

combination of the interacting nuclei along the backbone of a protein. The introduction of 

this standard has allowed the structure determination of proteins with data that was not 

possible before. To remain backward compatible, a conversion script is available that will 

convert the legacy format into the NEF format. This conversion script has also been 

integrated into the GUI.  

  

(a) (b) 

Figure 2.1. An example of equivalent a) NEF RDC file and b) legacy REDCRAFT RDC 

file. 

 

2.1.3.2 Methodology Updates to the REDCRAFT Software Package 

2.1.3.2.1 Improvements of Decimation Methodology 

 REDCRAFT’s core principle approach is to generate plausible structures in a 

combinatorial fashion and evaluate their fitness to the experimental data. To address the 
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intractability of combinatorial approaches, REDCRAFT has incorporated a static-

decimation strategy (previously described in[46]) to reduce a large number of quasi-

acceptable structures into a smaller and more manageable subset of structures by selecting 

representative structures. The static-decimation process utilizes user-specified parameters 

in order to balance the two competing objectives of examining a larger pool of structures 

versus the computational demands of a larger and more robust search for structures. Proper 

selection of these parameters is normally a simple process for typical data but becomes 

impossible for more noisy data.  Consideration of structures with poor fitness to the data is 

unnecessary accommodation under high signal to noise ratio. However, under the 

conditions of low signal-to-noise ratio, the true structure is more likely to be subjected to 

early elimination based on poor fitness to the data.  

 The new version of REDCRAFT overcomes the limitation of the static-decimation 

process by introducing the more intelligent and adaptive dynamic-decimation process. In 

the dynamic-decimation process, the search and decimation parameters of REDCRAFT are 

automatically and dynamically adjusted at each stage of the analysis to reflect the quality, 

and therefore the computational demands of that stage. To accomplish this, a percentage 

threshold of tolerance (n) is set instead of a static user-defined threshold. At each step in 

the elongation process of the algorithm, only structures with an RDC fitness score less than 

the current score of the fragment +n% will be considered in the decimation pool. Using 

this new approach, two common and limiting impediments will be corrected. The first is 

in situations where there is low data density. In areas of low data density, the contribution 

from the static-decimation routine causes the solution space to grow exponentially, which 

is manifested in exponentially increasing computational resources (CPU and memory). For 
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example, during the first few steps of elongation there are typically a few RDCs, which 

result in underdetermined definition of the problem. In such instances a globally defined 

acceptance criterion would likely include nearly all the possible structural solutions, as all 

potential structures will have a low RDC fitness score. Dynamic decimation controls this 

intractable growth rate by only considering structures within n% of the current score of the 

protein fragment. The second scenario appears in areas of highly noisy data. In these areas, 

contribution from decimation can drop to zero because of poor local structural fitness to 

the low-quality data. In this scenario, dynamic decimation assures controlled contribution 

from decimation.  

 Using the dynamic-decimation process we have investigated the low signal-to-

noise instances of structure determinations that were not possible before. For this 

evaluation we have used the target protein 1A1Z, for which structure calculation has not 

been successfully completed using RDC data with low signal-to-noise ratios. In our 

experiments we have pushed the limits of the structure determination of this protein with 

as much as ±4 hertz of added uniform noise.  

2.1.3.2.2 Incorporation of Data-Driven Dihedral Restraints 

 The protein databank[62] (PDB) currently houses close to 150,000 protein 

structures. However vast this collection, the data storage format does not allow for easy 

mining of low-level information such as dihedral angles restraints. However, recently a 

minable version of the PDB has been created called PDBMine. Using PDBMine, a protein 

sequence and a rolling window size is inputted. The protein is then fragmented into k-mers 

using the rolling window. The dihedral angles are then extracted from these fragments and 

aggregated for a given amino acid and the most likely dihedral is predicted. The resulting 
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information can then be used to generate the candidate angle files created in Stage-I of 

REDCRAFT by varying the predicted angles ± n degrees (n = 25 in this work). In this 

work, datasets as low as one RDC per residue in only one alignment medium will be used 

to characterize ubiquitin. Ubiquitin (1D3Z) was chosen due to the availability of both high 

resolution RDC data as well as both x-ray and NMR structure to compare results. It has 

also been the subject of past RDC studies[40, 47, 63-66] that serve as comparisons for the 

results of this study. To date, there has been no successful attempt of structure 

characterization with this sparse of data.  

2.1.3.3 Evaluation Protocol 

 Throughout the process of evaluating the new features of REDCRAFT we have 

utilized two target proteins 1A1Z and 1D3Z.  These two proteins have been selected 

because they represent helical proteins, appropriate in size for study by NMR spectroscopy, 

and have been the subjects of previous studies by RDC data. Each of these proteins provide 

challenging cases. For example, 1A1Z is a difficult protein to characterize due to its helical 

nature[67] and structural anomalies that force it to sample atypical Ramachandran 

Space[68]. The protein 1D3Z also provide other unique challenges due to its helical nature 

and hypothesized internal dynamics. The helical proteins are generally more challenging 

to study by RDCs since the backbone N-H vectors are in nearly parallel configuration. The 

dynamical nature of 1D3Z protein will provide a challenging case of establishing its 

backbone dihedrals. Other additional challenging attributes of each protein that qualifies 

them for our studies are described in individual sections. 

Our evaluation of REDCRAFT’s improved decimation routine proceeded in three 

main steps. During the first step, the known structure of 1A1Z was used to generate 
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simulated RDC data using typical order tensors previously used in several studies[46, 69] 

and the software package REDCAT[70]. The RDC set simulated included the four of the 

previously available RDC vectors as well as two new vectors ([H⍺-C⍺, N-C⍺]) that were 

previously unusable in REDCRAFT. Evaluation of a new methodology such as 

REDCRAFT based on simulated RDC data is of critical value. The use of simulated data 

allows for exact control over the quality of data, quantification of the performance as a 

function of signal-to-noise ratio, and proper assessment of time and space complexity of 

an algorithm as a function of data quality, to name a few. 

In addition, to test the utility of incorporating data driven dihedral angles, the 

protein 1D3Z, the NMR structure of ubiquitin, was used. Due to the availability of 

experimental RDCs for 1D3Z, no additional synthetic RDCs were generated. Previous 

results for 1D3Z using REDCRAFT have shown that for high resolution structure 

calculation, at least two RDC vectors in two alignment media are required. To test the new 

dihedral restraints, we will attempt to decrease the total RDCs needed.  

During the second phase of evaluation, the simulated RDC data are utilized by 

REDCRAFT to generate a protein structure. During this phase of the experiment, the 

REDCRAFT’s RDC-fitness score was used to evaluate the success of REDCRAFT. If 

successful, the viable structures should exhibit an RDC-fitness to the data that is in the 

same order of the experimental error (related to the signal-to-noise). 

Finally, during the third step, the computed structure is compared to the starting 

structure (the ground-truth) in order to ascertain the success of REDCRAFT. To evaluate 

structural similarity, the bb-rmsd (backbone root mean squared deviation) between 

resulting REDCRAFT structures and the target structure was calculated. The measure of 
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bb-rmsd is prevalently used to establish the structural similarity between two proteins. 

Values under 3.5Å can signify the success of REDCRAFT under noisy data conditions, 

while values under 2Å can be interpreted as strong evidence for structural similarity. 

2.1.4 Results/Discussion  

2.1.4.1 Integration of Graphical User Interface 

 The Graphical User Interface (GUI), written in Qt5, was integrated seamlessly into 

the REDCRAFT package utilizing CMake. Qt5 contains CMake bindings to link all the 

necessary Qt dependencies, therefore the end user will notice no difference between 

compiling the REDCRAFT engine and the GUI itself. The GUI can be launched directly 

from the command line so that it may immediately open the current working directory, or 

it may be launched from its binary. REDCRAFT and subsequently REDCRAFT GUI runs 

seamlessly on all flavors of Linux as well as macOS. Dependencies for this version of 

REDCRAFT are the GCC G++ Compiler, OpenMP (used for parallelization of 

processing), Qt5 with Charts (for GUI support), and Python 3 and Perl (for auxiliary script 

support). Instructions for installation of all dependencies can be found in the REDCRAFT 

documentation (https://redcraft.readthedocs.io/ ).  

 After executing the GUI, the user will be presented with the screen shown in Figure 

2.2. The initial screen consists of four panels. The first panel (Panel A) displays a greeting 

message as well as some “quick tips” to aid the user in utilization. Panel B loads the run 

parameters for Stage-I and Stage-II. Tabs allow for easy navigation between the two stages. 

Panel C shows all files present in the user’s working directory, that is, the folder in which 

the REDCRAFT GUI was started in. This working directory can be changed via File-

>Open Directory at the top left of the GUI. In Panel D the output of each stage of execution 

https://redcraft.readthedocs.io/en/latest/index.html
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is printed. For instance, if the “Execute Stage 1” button is pressed then the results of Stage-

I angle creation will be shown (see Figure 2.3a and 2.3b as examples). When in the “Stage 

2” tab of Panel B, if the “Execute Stage 2” button is pressed then the results of Stage-II 

calculation will be shown in Panel D. When the “Advanced” tab is selected in the Stage 2 

tab on Panel B, the panel expands to fill the entire column (as seen in Figure 2.3c) and 

additional parameters are shown. At any time during the execution of either stage, the 

process can be stopped by pressing the stage’s respective “Stop” button (shown in red on 

Panel B).  

 

Figure 2.2. The main REDCRAFT GUI implemented in Qt5. 

   

(a) (b) (c) 

Figure 2.3. Three examples of dialogues that can be triggered by REDCRAFT at various 

stages of its analysis. 
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 After executing the REDCRAFT analysis through its GUI, the resulting config file 

follows the standard INI format, but with comment support. The user is free to modify the 

configuration file directly, but the GUI will automatically eliminate any additional user 

comments in order to maintain backward compatibility. 

2.1.4.2 Results of Structure Calculation Using Improved Decimation Method 

 The new version of decimation is universally faster than the previous version. 

Figure 2.4 shows the results of the first 20 residues of 1A1Z (using RDC data with ±4 Hz 

of error) folded with the previous version of decimation compared to the same segment 

folded using the new decimation method using identical search parameters. The 20-residue 

(out of 83 total) segment of 1A1Z was selected due to the excessive space requirement of 

the previous version of decimation. The previous version required 4 hours of analysis time, 

at the end of which the final structure exhibited a bb-rmsd of 1.589Å to the reference 

structure (RDC fitness score of 2.21, results shown in Figure 2.4a). However, the extension 

of this fragment required memory in excess of the 16GB of the host computer and therefore 

did not complete the full analysis of the protein within a week. The new version of the 

decimation completed this exact segment on the same host computer in about 4 minutes 

and produced a structure with backbone bb-rmsd similarity of 0.946Å to the reference 

structure (RDC fitness score of 2.19, shown in Figure 2.4b). Of the greater importance is 

the success of the new version of REDCRAFT in providing a full structure of 1A1Z 

(illustrated in Figure 2.5 and discussed in the next section) that was never completed by 

the previous version of the software.  
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(a) (b) 

  

Figure 2.4. Computed structure of 1A1Z with 4Hz of experimental error a) produced by 

the legacy version, and b) by the improved decimation procedure.  

 

2.1.4.3 Results Reconstruction of Proteins Using NEF Format 

 The changes to the core REDCRAFT engine to accept NEF format enable it to 

perform the structure calculation of proteins based on a flexible set of RDC data. RDC 

pairs that were unavailable in the old version are now able to be used for reconstruction. 

For example, 1A1Z with [H⍺-C⍺, N-C⍺] RDC data in two alignment media with 0 Hz of 

simulated noise can now be folded with REDCRAFT. Using the new decimation approach, 

REDCRAFT produced the final structure of 1A1Z with a bb-rmsd of 1.404Å and an RDC 

fitness score of 0.835 when compared to X-ray structure of 1A1Z (Figure 2.5). This is a 

substantial achievement in the successful folding of a protein with flexibly defined RDCs.  

 

Figure 2.5. A comparison of the structural similarity between the X-ray structure of 1A1Z 

and the computed structure of the entire structure by REDCRAFT using new RDC 

vectors and the NEF format.  
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 However, it should be noted that this modification causes a slight increase in 

runtime that can vary from 1-5% slower than the previous version. The time requirements 

were benchmarked by performing structure calculation of the same protein, using the same 

set of RDCs in both the previous and NEF-compatible version. Typically, the new version 

of REDCRAFT completes within a minute of the previous version for an analysis that takes 

approximately 45 minutes, and therefore the slower performance is considered negligible.  

2.1.4.4 Incorporation of Data-Driven Dihedral Restraints 

The protein sequence for ubiquitin (76 residues) was submitted to PDBMine with 

a rolling window size of six. The resulting dihedral predictions for each amino acid was 

then used to create dihedral restraints by varying them +/- 25 degrees in steps of 5 degrees 

to be used in Stage-I of REDCRAFT. The structure was then calculated with a varying set 

of RDC data both with and without the PDBMine-based dihedral restraints. For each set of 

data, a figure depicting the alignment was produced, in which the target structure is shown 

in green, the structure determined without the dihedral restraints in magenta and the 

structure determined using the dihedral restraints in blue.  

The first set of data (results shown in Figure 2.6) included [C’-H, N-H] from two 

alignment media. The resulting structure without the use of the dihedral restraints was 2.8Å 

from the x-ray structure whereas using the dihedral restraints resulted in a structure that 

was just 1.4Å away from the target.  
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Figure 2.6. Alignment for the structure with dihedral restraints (magenta), without (blue) 

and x-ray structure of ubiquitin (green) for the first set of RDCs ([C’-H, N-H]x2). 

 

The second set of data (results shown in Figure 2.7) included only [N-H] RDCs in 

two alignment media. The resulting structure without the dihedral restraints exhibited a bb-

rmsd of 11.6Å whereas the structure that utilized dihedral restraints exhibited structural 

deviation of just 2.0Å.  

 

Figure 2.7 Alignment for the structure with dihedral restraints (magenta), without (blue) 

and x-ray structure of ubiquitin (green) for the second set of RDCs (N-Hx2). 

 

The last set of data (results shown in Figure 2.8) included only [N-H] RDCs from 

just one alignment medium. The structure without dihedral restraints was over 21.1 Å away 

from the target structure whereas the structure calculation using dihedral restraints was just 

2.4 Å away.  
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Figure 2.8. Alignment for the structure with dihedral restraints (magenta), without (blue) 

and x-ray structure of ubiquitin (green) for the second set of RDCs (N-Hx1). 

 

Detailed results are shown in Table 2.1 for each of the datasets. The bb-rmsds in 

this table clearly show that the incorporation of data-driven dihedral increases the structure 

calculation ability of REDCRAFT. In addition, structural alignment of the three proteins 

from each set were aligned using a multiple structure alignment tool called MSTali[71]. 

Using the first set of RDCs, the three resulting structures retain 67 residues in common 

structurally. This indicates high level of structural similarity. However, when the dataset is 

reduced to the second and third set then the core residues in common drops to 29 and 22 

respectively. This reinforces the structural dissimilarity of the structures in which the 

dihedral angles were used and those in which they were not.  

Table 2.1. Results for each of the datasets is shown. 

Set 
RDCs 

(# Align Media) 

BB-rmsd Without 

Dihedrals 

BB-rmsd With 

Dihedrals 

1 
[C’-H, N-H] 

(2) 
2.8 1.4 

2 
[N-H] 

(2) 
11.6 2.0 

3 
[N-H] 

(1) 
21.1 2.4 
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2.1.4.5 Additional Scripts, Functionality, and Features 

 During structure calculation, thousands of different phi/psi combinations are 

explored. Currently, the REDCRAFT algorithm will automatically generate a .pdb file for 

the top structure as each amino acid is added to the structure. However, one may be 

interested in considering an ensemble of the top N structures, not just the “best” structure. 

To facilitate this analysis, pdbgen and pdbgen2 have been added which both generate .pdb 

files based on a string of phi/psi angles and a string of amino acids. Pdbgen can generate 

structures directly from the .out files that are created during a run of REDCRAFT and is 

able to read single character residue names. Pdbgen2, which does not require any options 

and only takes in a string of phi/psi angles and a string of amino acids as its arguments, is 

simpler to use and desirable for quick pdb construction. The pdbgen collection 

accommodates both basic and comprehensive structure generation from phi/psi angles. 

These programs can also function as standalone programs for quick pdb generation and 

verification where the other features of REDCRAFT are not necessary. The pdbgen tools 

will eventually make up part of the REDCRAFT GUI analysis suite where they can be 

better employed to help users find exactly where the intermediate protein structure may 

deviate during structure generation.  

2.1.5 Conclusions/Future Work 

 In this work, we have presented significant improvements to the REDCRAFT 

software package in the important areas of usability, accessibility, and core methodology. 

The inclusion of a GUI makes the software more usable by a wider audience. Incorporation 

of NEF standards makes the software compliant with a large suite of other widely available 

NMR software packages. In addition, the NEF import file allows for increased flexibility 
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of RDCs that can be utilized by REDCRAFT which will allow structure calculations of 

more complex and larger proteins, such as those that have been perdeuterated due to size. 

We have also shown that the improved decimation method allows the method to be used 

to calculate proteins that it was unable to complete before due to experimental noise. In 

addition, we presented incorporation of a dihedral restraint that was mined from the 

PDBMine database. Using these restraints, the structure of ubiquitin was characterized 

using just one RDC from one alignment medium. Structure calculation with so few RDCs 

per residue has, to date, never been achieved. Lastly, we introduced new standalone 

functionality to produce .pdb files from only phi/psi angles which is useful when analyzing 

ensembles of structures.  

 In future work, we plan to extend the REDCRAFT algorithm to also be capable of 

characterizing nucleic acids.  

2.2 PDBMine: A Reformulation of the Protein Data Bank to Facilitate Structural 

Data Mining 

 

2.2.1 Abstract 

Large scale initiatives such as the Human Genome Project, Structural Genomics, 

and individual research teams have provided large deposits of genomic and proteomic data. 

The transfer of data to knowledge has become one of the existing challenges, which is a 

consequence of capturing data in databases that are optimally designed for archiving and 

not mining. In this research, we have targeted the Protein Databank (PDB) and 

demonstrated a transformation of its content, named PDBMine, that reduces storage space 

by an order of magnitude, and allows for powerful mining in relation to the topic of protein 

structure determination. We have demonstrated the utility of PDBMine in exploring the 
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prevalence of dimeric and trimeric amino acid sequences and provided a mechanism of 

predicting protein structure. 

2.2.2 Introduction 

Completion of the Human Genome Project in 1990[72] marked the beginning of the 

era of Big Data. Since then, various funding agencies initiated numerous large scale studies 

such as Structural Genomics Initiative[73], Protein Structure Initiative[1], and Genomic 

Data Commons[74] that have generated unimaginable volumes of data. Currently GO[75] 

houses over 7 million annotated genes and PDB[62] houses over 144,729 protein structures 

alone. Many other existing repositories of internationally collected data can be listed. 

While the advancement of technologies and scientific methods have contributed to the 

large growth in the data volume, velocity, and variety, the collected data has not had the 

anticipated impact in expansion of our knowledgebase. The limited impact of these 

databases is due to the fact that these repositories are optimized for data deposition but not 

for data mining. Recognizing this limitation, various funding agencies (including NSF and 

NIH) have declared new initiatives with the objective of transforming data to knowledge. 

Such transformation will require re-representation of data in such a manner that facilitates 

mining and knowledge discovery. Here we present the first instance of transformation of 

the Protein Databank (PDB) that allows for discovery of knowledge. 

  Proteins are a class of macromolecules that perform various functions in cells 

including structural support, enzymatic activities, cell signaling, and more. Proper 

regulation of proteins is crucial for life in all living organisms. Proteins are made up of 

smaller subunits called amino acids that are structurally defined by a series of angles called 

dihedrals. Large scale mining of this data can potentially lead to prediction of structure, 
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function, binding sites, and better understanding of evolutionary relationships between 

organisms[71, 76]. 

The primary database that houses structural information of proteins, PDB, contains all 

the necessary information needed to probe for structural insights but is not configured in 

such a way as to make the task straightforward. For example, there is currently no 

capability to easily extract dihedrals from these coordinates for a given sequence. To 

extract these angles for use in structure prediction algorithms, one would need to first 

perform a sequence search across all proteins, download all the hits, and finally write a 

script, or series of scripts, to extract the coordinates from the PDB files to perform the 

calculation of dihedrals. Each step of this process is difficult and/or time-consuming. Our 

new database, PDBMine, will alleviate these difficulties and make it easy to extract 

information such as dihedral angles quickly and accurately from raw PDB coordinates for 

use in a variety of applications. In addition to various observations resulted from PDBMine, 

we present our its preliminary application in prediction of protein structure.  

2.2.3 Background and Methods 

2.2.3.1 Existing Databases and Their Limitations 

Protein DataBank or PDB (https://www.rcsb.org/) is historically the oldest 

international repository of macromolecular structures dating back to as early as 1971. 

Currently, PDB houses the three-dimensional coordinates of 144,729 protein structures and 

provides an array of search mechanisms. However, the search mechanisms provided by 

PDB are aimed at navigating and retrieving the contents of the database. Therefore, there 

is little to no capability of querying at a more fine-grain level that will allow for knowledge 

discovery. Over the past decade, there have been several attempts[77, 78] that aimed at 

https://www.rcsb.org/
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creating a database for fine-grained mining of protein databases. In 2006, the DASSD[77] 

was created as a database that housed short protein fragments (sizes 1, 3, and 5 amino 

acids). Through now an inactive website, users were able to enter a sequence of amino 

acids to receive structural information regarding the middle residue of the query. In 

addition, DASSD would also provide a prediction related to the secondary structure 

formation of a given fragment. The limitation of the input size (1, 3 or 5 residues) made 

predictions of larger proteins implausible. Furthermore, as we demonstrate in the results, 

fragments of size 3 or 4 residues do not provide sufficiently converged results to 

meaningfully define a protein structure. Therefore, it is critical that a database to be capable 

of querying all fragment lengths including k-mers with k>=5. Protein Geometry Database 

(PGD)[78] is another attempt at creation of minable database of protein structures. This 

database extended the maximum fragment size to 10 amino acids and added additional 

search criteria such as R-factor and x-ray resolution. However, the current version of the 

database contains information for only 16,000 protein structures determined from only x-

ray. While PGD may provide mining of “high-quality” structures, the limited number of 

protein structures and methods of characterization could lead to erroneous or biased results, 

especially when dealing with proteins that are inherently difficult for x-ray diffraction 

(such as membrane proteins and proteins that undergo dynamics). The database presented 

in this paper aims to overcome the limitations of these implementations and therefore create 

a more complete and encompassing platform for analyzing local and global protein 

geometries.  
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2.2.3.2 Transformation of PDB into PDBMine 

Data and their corresponding databases can be formulated and transformed to reduce 

their space requirements, to increase data retrieval speed, to serve as more secure repository 

of data, to name a few example final objectives. In this work we transformed the existing 

PDB data with the primary goal of providing a more useful structural mining database. To 

that end, we extracted the following information from each protein structure: the 

mechanism of structure determination, the primary sequence of every protein, backbone 

torsion angles, hydrogen bonding, surface accessibility, as well as the three-dimensional 

coordinates of each atom. The derived information was then captured in PDBMine 

(simplified schema shown in Figure 2.9). The program DSSP[79] was used to convert each 

of the downloaded pdb files to their corresponding dssp files, which contained the surface 

accessibility, hydrogen bonding information, and ɸ/Ѱ angles for each residue. The contents 

of the DSSP file was then stored in the PDBMine database. MySQL was chosen as the 

platform for the PDBMine and a series of Python scripts were developed to parse and store 

the data into the database.  

 

Figure 2.9. Database schema for PDBMine. 
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PDBMine consists of three tables: ATOM, PHI_PSI and EXPERIMENT. The ATOM table 

contains the protein name, residue number, residue type, atom type as well as the atomic 

coordinates (X, Y, Z) for every atom in every protein. Storing the protein in this raw form 

allows for extracting spatial information such as “finding all the carbon atoms that are 

within 2Å of nitrogen” or “finding all the alanines that are within 5Å of a proline.” Such 

queries could be used to identify proteins with certain structural motifs. The PHI_PSI table 

contains the dihedrals for all residues of each protein as well as other information collected 

from the DSSP program such as surface area accessibility. Finally, the EXPERIMENT 

table summarizes the metadata associated with the protein such as the experimental method 

of structure determination.  

2.2.3.3 Application of PDBMine in Structure Prediction 

One application of the PDBMine database is prediction of backbone dihedral angles of 

a protein. Three dihedral angles phi (ɸ), psi (Ѱ), and omega (Ω) define the structural 

variability of the protein backbone at each amino acid. The collective effect of these torsion 

angles defines the overall structure of a protein. Due to the biophysical properties of the 

peptide bond, the Ω torsion angle is generally fixed at 180° (or occasionally 0°). Therefore, 

the effective degrees of freedom at any given amino acid are ɸ and Ѱ. Current methods of 

protein structure prediction and calculation[80, 81] rely on, at least to some extent, accurate 

prediction of dihedral angles for a given set of amino acids or a k-mer. These “local” 

dihedral predictions are used as scaffolding for the prediction of the full global structure. 

It, therefore, becomes important for the local k-mer geometries to be accurately predicted. 

If they are inaccurate then stitching the k-mers together to create the global structure will 

produce erroneous results.  
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Here we present an example application of PDBMine to facilitate more sophisticated 

and complete data analytics of the protein backbone dihedrals. In this application, we have 

created a frontend to the PDBMine with the specific task of collecting, analyzing, and 

reporting of the data. More specifically, this frontend accepts a protein primary sequence, 

and a search window size of k (where n >=k). The protein sequence is then automatically 

dissected into k-mers using a rolling window. Each k-mer is then queried in the database. 

The results for each of the queries are collected into a series of CSV files that contain the 

PDB accession number of the database hit, the chainID, model number, amino acid name, 

and the corresponding ɸ/Ѱ angles. Furthermore, the backbone torsion angles for each 

residue is consolidated by combining the results for every one of the k places that the amino 

acid could appear in a k-mer rolling window. Finally, using the aggregated dihedrals for 

each residue and Kernel Density Estimation[38, 82], the most likely dihedral is predicted. 

All final and intermediate results are compiled and sent to the user via email.  

2.2.3.4 Evaluation Techniques 

In 1963, G.N. Ramachandran noted the seminal observation that the ɸ/Ѱ values in 

proteins adhere to a more restricted range of angles[56]. This restricted space of protein 

backbone dihedrals is denoted as Ramachandran plot (or R-Space). The first step in the 

evaluation of PDBMine was to query and recreate the previously reported R-Space[16, 46, 

83] for each amino acid. The resulting distribution plots are then compared to the 

previously published and well accepted R-Spaces for each of the amino acids. This step 

will serve as a validation step through agreement with the previously reported work. As an 

extension, more complex and novel (previously unknown) R-Spaces were also created 

from extended k-mers (2-mers and 3-mers). The novel R-spaces serve as examples of new 
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information that can be produced from mining the PDBMine. Finally, we have 

demonstrated the potential of PDBMine in application to the challenging task of protein 

structure prediction. In this context, using the results from the database, the protein 

structure of ubiquitin was predicted purely based on statistical sampling of the backbone 

dihedrals. The predicted structure was compared to the x-ray structure currently published 

in PDB.  

2.2.4 Results and Discussion 

2.2.4.1 Database Creation 

The total time consumed for downloading, parsing and uploading all proteins within 

the PDB was ~2016 hours, or 84 days. The final total space requirement for the database 

was 310 GB. This is an improvement over the space that is currently required (over 1 TB) 

to store the protein structures in pdb format in the PDB.   

Of the 144,729 number of protein structures that were parsed, 3,764 of them required 

additional treatments due to file abnormalities such as the presence of DNA and RNA 

molecules, missing atoms, misnamed atoms, and others. These anomalies were addressed 

by designing and deploying specific scripts, after which, the final product was parsed and 

uploaded to PDBMine.  

2.2.4.2 Results of the Data Mining and Analysis 

2.2.4.2.1 Evaluation of Data - As a prerequisite step, some basic analyses were performed 

to validate the content of PDBMine based on previously known information. The first of 

which was to calculate the abundance of each single amino acid and compare it to the 

statistics published from UniProt[84] (a database of all known protein sequences). Figure 

2.10 shows a comparison of amino acid abundance from the two sources in a grouped bar 
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chart. The red and blue bars represent the calculated percentage occurrence of each amino 

acid in PDBMine and UniProt respectively. The two figures demonstrate very close 

agreement between two sources, indicating validity of the PDBMine’s data. In this figure, 

the largest observed difference is for the amino acid tyrosine (Y).   

 

Figure 2.10. The abundance of each amino acid found in Uniprot (blue) and PDBMine 

(red). 

 

The abundance of amino acid 2-mers and 3-mers was also mined from PDBMine. 

Figure 2.11 shows the percentage appearance of all 2-mers (400 combinations) in all 

known protein structures. Although it is difficult to gleam the exact count number for a 

given 2-mer from the figure, it is included here to show the general shape of the 

distribution. In particular, to illustrate that not all dimers are uniformly present. For 

instance, four dimers (LL, AL, AA, LA) occur ~700,000 times while three dimers (CW, 

CC, WC) only occur ~15,000 times (nearly 50 times less). 

 

Figure 2.11. The general shape of the distribution of 2-mers in the database. 
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The percentage occurrence of 3-mers follows the same general shape as the 2-mer 

distribution shown in Figure 2.11. There are six 3-mers (ALL, EAL, ALA, AAL, LAA, 

AAA) that occur over 70,000 times within the database whereas there are eight (CHW, 

MWC, CMW, CCW, HWC, CIW, WWC, WCM) that occur less than 200 times. At the 

time of submission, there were no publications that detailed reasons as to the significance 

of some k-mers occurring more often than others.  

In addition to comparing the distributions of amino acids, the R-Space was extracted 

for each of the 20 amino acids. These were visually compared to the known, accepted R-

Spaces for single amino acids. For brevity, only the case of GLY and PRO are presented 

as they have R-Spaces that differ significantly from the other 18 amino acids. Figure 2.12a 

shows the comparison of the PDBMine generated (left) and accepted[85] (right) R-Spaces 

for GLY. Part b of Figure 2.12 depicts the same for PRO.  

  

a. 

  

b. 

Figure 2.12. R-Space (PDBMine on left and accepted on right) for a) GLY and b) PRO. 
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2.2.4.2.2 Prediction of ɸ/Ѱ Angles - The utility of PDBMine can well exceed beyond the 

scope of a single amino acid. Figure 2.13a-d offer some useful insights for the common 

amino acid pair of glycine-proline. This motif occurs often in protein structures especially 

in the loop and turn regions. Figure 2.13a shows the R-Space for the glycine in the context 

of the glycine-proline combination. Proline is a relatively rigid amino acid whereas glycine 

is very flexible due to their respective sidechain configurations. In comparison to the 

typical glycine space (Figure 2.13a), Figure 2.13b shows a much more restrictive area of 

permissible torsion angles. Figure 2.13b depicts the R-Space for the proline of all glycine-

proline amino acid pairs. In this case, the addition of the glycine does not change the R-

space significantly for proline. Figur 2.13c-d show the R-Space for proline-proline pairs. 

In this pairing, the ɸ/Ѱ angles for the first proline (panel c) are significantly restricted 

compared to the traditional R-Space shown in Figure 2.13c. The second proline in the pair, 

shown in panel d, however, shows much better agreement with the traditional proline R-

space. The proline-proline motif occurs in proteins fairly often with a current count size of 

204,994 and, therefore, an increased understanding of its local structure will be of great 

benefit to computational methods.  
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a. b. 

  

c. d. 

 

Figure 2.13 R-Spaces for a) GLY of GLY-PRO, b) PRO of GLY-PRO, c) first PRO of 

PRO-PRO and d) second PRO of PRO-PRO. 

 

In addition to calculating the R-space for amino acids and 2-mers, this method can be 

extended to k-mer ɸ/Ѱ prediction. One example is shown in Figure 2.14 depicting the R-

Space for the 3-mer GLY-PRO-PRO. As it can be seen the space of allowed dihedral angles 

are significantly more limited compared to Ram-Space of a single amino acid (compare 

Figure 2.14a-c to Figure 2.12a,b). 
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a. b. 

 

c. 

 

Figure 2.14. R-Space for the triplet GLY-PRO-PRO a) for GLY, b) for first PRO, c) for 

second PRO. 

 

2.2.4.2.3 Protein Structure Prediction - The protein ubiquitin (76 residues) has been the 

subject of numerous studies by both experimental and computational methods[17, 46] of 

structure calculation. This makes it an ideal candidate for a proof-of-concept case. The 

dihedral angles of ubiquitin were calculated using a KDE-based prediction of k-mer 

dihedrals with k values of 3, 6, and 7. Examples of deviation in R-spaces for a given amino 

acid is shown in Figure 2.15. Notice that as the k increases (from left to right), the dihedral 

space becomes increasingly confined which leads to, as shown later, better structure 

prediction.  
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Figure 2.15. Examples of the differences for residue 14 of ubiquitin at lengths of k= 3, 6 

and 7  

 

Structures were generated based on the results for the three different experiments (3-

mer, 6-mer, 7-mer) using the program “pdbgen” included in the REDCRAFT[16, 20, 42, 

86-89] software package. The structure using k=3 (shown in Figure 2.16 in red) exhibited 

a backbone root mean squared deviation (bb-RMSD)  of over 22Å to the crystal structure 

PDB-ID:1UBQ[90]. This indicates a low level of overall structural similarity. The resulting 

structures for 6 and 7 (shown in green and purple respectively in Figure 2.16) were similar 

with both exhibiting a bb-RMSD of around 3.5Å to the known crystal structure. This bb-

RMSD indicates a reasonably high level of similarity between the two structures. 

 

Figure 3.16. Resulting structures for k=3,6,7 (red, green and purple) aligned to the x-ray 

structure (blue). 

 

Further analysis using multiple structure alignment software msTALI[71, 76] showed 

that the conserved core between these three structures (k=6,7 and the x-ray) contained 57 
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residues. The remaining 19 residues contributed to the divergence in structure (bb-RMSD). 

It is also worth noting, that a structural alignment including the result from k=3 yielded a 

core conserved region of 25 residues. While this indicates more regions of divergence, it 

also illustrates the amount of valuable information that is still present even at the k=3 level. 

2.2.4.3 Web Resources 

A preliminary interface to the database has been created that will allow for fast, easy 

extraction of dihedral angles given a k-mer (ifestos.cse.sc.edu/frontend). The website was 

created using HTML/CSS, while the backend computation and data storage is 

accomplished using a combination of Python scripts and a mySQL database.  

2.2.4.3.1 Navigation - The first page on the website the user inputs a window size, amino 

acid sequence, and an email address. After making a submission the user is provided with 

a summary of their input or an error message. 

2.2.4.3.2 Usage - To submit a query, the user needs to provide a window size, an amino 

acid sequence, and a contact email address. The sequence can be submitted either as a 

single amino acid string (E N I E... etc.) or in a triplet format (GLU ASN ILE GLU... etc.). 

For the triplet format, the user needs to check the “Use AAA Formatting” option. Once 

submitted, the server will schedule the query and return the results once complete. These 

results contain a list of the predicted maximum likelihood angles for each residue in the 

request, plots of the KDE for each residue, and folder of the CSV files returned by the 

database. These CSV files contain a list of all proteins in the database that contained that 

k-mer along with the dihedral measures for each in which the user can perform their own 

additional analyses on the dihedral information. 

https://ifestos.cse.sc.edu/frontend
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2.2.4.3.3 Capabilities - Our local, fragment-based approach allows the user to obtain 

predicted structural information for sequences that have low global similarity with existing 

entries in the PDB. Changing the window size allows the user to control the amount of data 

returned. Larger sizes are more restrictive but will produce more well-defined results. 

Smaller sizes can be employed for sequences with unusually low representation in the 

PDB. 

2.2.4.4 Future Work 

Future work will include improvements in two major areas: angle prediction and the 

web interface. Machine learning techniques such as traditional and deep neural networks 

can be used in place of the KDE method to improve the prediction of dihedral angles. 

Additions to the website will include advanced filtering including the ability to select only 

proteins characterized by certain experimental methods as well as the ability to select 

certain PDB ids to be excluded. In addition to these advances in capability, there will be 

additional graphical changes including onsite interactive visualization of R-Spaces for a 

given k-mer as well as automatic generation of protein structure ensembles from predicted 

angles.  

2.2.5 Conclusion  

In this work, PDBMine, a database of dihedral angles mined from known protein 

structures, was presented. To demonstrate the validity of the data, known R-Spaces were 

generated and compared to their respective counterparts. In addition, preliminary results 

were shown for protein structure calculation using solely KDE-based prediction of dihedral 

angles. The web interface of this database allows for easy and efficient retrieval and 

analysis of dihedral angles for k-length amino acid sequences. The output of this website 
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can be easily incorporated into existing protein structure calculation tools for increased 

accuracy of models. In future work, more sophisticated mechanisms of prediction will be 

utilized, and improvements will be made to the web interface to allow for more flexible 

querying.   

2.3 Structure Calculation and Reconstruction of Discrete State Dynamics from 

Residual Dipolar Couplings 

 2.3.1 Abstract 

Residual Dipolar Couplings (RDCs) acquired by Nuclear Magnetic Resonance 

(NMR) spectroscopy are an indispensable source of information in investigation of 

molecular structures and dynamics. Here we present a comprehensive strategy for structure 

calculation and reconstruction of discrete state dynamics from RDC data that is based on 

the Singular Value Decomposition (SVD) method of order tensor estimation. In addition 

to structure determination, we provide a mechanism of producing an ensemble of 

conformations for the dynamical regions of a protein from RDC data. The developed 

methodology has been tested on simulated RDC data with ±1Hz of error from an 83 residue 

α protein (PDBID 1A1Z), and a 213 residue α/β protein DGCR8 (PDBID 2YT4). In nearly 

all instances, our method reproduced structure of the protein including the conformational 

ensemble to within less than 2Å. Based on our investigations, arc motions with more than 

30° of rotation are identified as internal dynamics and are reconstructed with sufficient 

accuracy. Furthermore, states with relative occupancies above 20% are consistently 

recognized and reconstructed successfully. Arc motions with a magnitude of 15° or relative 

occupancy of less than 10% are consistently unrecognizable as dynamical regions within 

the context of ±1Hz of error.  
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2.3.2 Introduction 

Structural elucidation, including the study of molecular complexes and 

characterization of internal dynamics of macromolecules, is often the requisite step in the 

molecular characterization of diseases. The breathing motion of myoglobin[91-94] can be 

cited as the historical instance of protein with internal dynamics that facilitates its 

biological function. Other proteins such as: hTS[95, 96], DHFR[3, 97, 98] and the 

carbohydrate recognition domain of Galectin-3[99] can be cited as other examples of 

dynamical proteins that are targets of pharmaceutical developments. Many RNA-binding 

proteins such as DGCR8, an integral component of the MicroRNA processing 

machinery[100], undergo conformational changes to enable the biological function of that 

protein. Therefore, development of methods leading to elucidation of structure and 

dynamics of proteins is of paramount importance. Study of dynamical proteins with X-ray 

crystallography is fundamentally difficult under the desiccated and restrictive crystalline 

environment that may interfere with the native-state dynamics of aqueous proteins. Nuclear 

Magnetic Resonance (NMR) spectroscopy, on the other hand, characterizes proteins in 

solution, which permits observation of conformational changes over different timescales. 

However, while NMR spectroscopy readily detects dynamical segments of proteins 

through the observation of T1/T2 relaxations[101-103] or Liparo-Szabo order 

parameters[104], such traditional approaches fail to provide atomic-level description of the 

conformational states. This is in part due to insensitivity of the commonly employed, short-

range Nuclear Overhauser Effect (NOE) restraints to conformational changes. 

Furthermore, study of dynamics is complicated because functionally relevant events often 

take place on time-scales (μsec-msec) that are inherently difficult to observe by traditional 
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Liparo-Szabo approaches that are sensitive to time scales faster than the overall correlation 

time (τc)[105-107].  

The recent reintroduction of Residual Dipolar Couplings (RDC) acquired by NMR 

spectroscopy has presented new opportunities for structure determination and study of 

internal dynamics. Availability of RDCs has expanded the macromolecular investigations 

beyond structural characterization and into probing of internal dynamics[108] and 

molecular interaction. RDCs hold the promise to report on a large, comprehensive range 

of motional timescales spanning both sub- and supra-tc windows[109, 110]. The use of 

RDCs in study of dynamics fall into one of the two following categories: model-based and 

model-free approaches. The model-based approaches constitute some of the earliest 

approaches to investigation of internal dynamics. These methods utilize an existing protein 

structure (obtained by NMR spectroscopy or X-ray crystallography) and proceed by either 

assuming a fixed model of dynamics[5, 111] (typically a conical motion), or a presumed 

stochastic model[23, 112-114]. While these methods do not provide atomic level 

description of the conformational states, they can be used for quantitative analysis in 

amplitude of the internal dynamics. The model-free approaches[45, 50, 115-119] take 

advantage of the modern Molecular Dynamics Simulation (MDS) software such as 

CHARMM[120], NAMD[15], GROMACS[14], Amber[13, 121] or Xplor-NIH[122] to 

simulate the averaged observable RDC data over a course of conformational changes. 

These approaches can provide atomic-resolution conformational states, but at the same 

time rely on an existing protein structure as the starting point of the MD simulation. 

Independently, both approaches (model-based and model-free) proceed in two successive 

steps beginning with protein structures determined under the assumption of rigidity, 
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followed by characterization of dynamics. Although structure determination protocols 

based on the assumption of molecular rigidity may conveniently yield a structure, the 

degree of similarity between a static model of a protein structure and its many 

conformations remains poorly understood. Our recent work[20, 123] highlighted the 

possibility of obtaining erroneous structures for a protein that is undergoing internal 

dynamics. Consequently, mapping of dynamics onto a false static structure may lead to a 

compromised motional model. This can be attributed to the fact that it is conceptually 

difficult to separate structure from dynamics, because the two are intimately related. Thus, 

any attempt in structure elucidation that disregards the dynamics of the protein (or vice 

versa), may run the risk of producing faulty results. Furthermore, the strategy of structure-

first followed by dynamics next, imposes collection of superfluous data, which may 

include: the traditional distance-based restraints and relaxation data to establish the 

existence of internal dynamics. Acquisition of the additional data inflates the cost and time 

requirements of these studies.  

A conceptually attractive and alternative approach is to simultaneously characterize 

a protein's structure and its intrinsic dynamics[16, 17, 20, 41, 46, 124]. Ideally, such an 

approach could solely rely on RDC data carrying both, structural and dynamical 

information. However, the major bottleneck in utilization of RDC data in recent years has 

been attributed to a lack of RDC analysis tools capable of extracting the pertinent 

information embedded within this complex source of data. Nearly all legacy NMR data 

analysis software packages (i.e. Xplor-NIH, CNS[125], Cyana[126]) have been modified 

to accommodate RDC restraints. Other software packages have been developed in recent 

years specifically for structure calculation of macromolecules from RDC data[10, 16, 18, 
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23, 46, 47, 52]. Here we present a comprehensive approach for concurrent characterization 

of structure and dynamics of proteins from RDC data using the software package 

REDCRAFT[16, 20, 46]. Our approach permits structure calculation of proteins from a 

relatively sparse set of RDCs in the absence of dynamics. Here we extend our protocol to 

include identification and characterization of different modes of dynamics. Identification 

of the onset of dynamics and characterization of the mode of dynamics is based on the 

dynamic-profile analysis as implemented REDCRAFT. We demonstrate that discrete-state 

dynamical regions of a protein (when present) can be reconstructed based on perturbation 

of order tensors calculated from Singular Value Decomposition (SVD)-based[16, 127] 

mechanisms.  

2.3.3 Methods 

The presented methodology proceeds in four conceptual steps of: structure 

determination, identification of onset of dynamics, classification of the mode of dynamics, 

and reconstruction of different conformational states. Testing and validation reported in 

this work is based on simulated instances of dynamics and their corresponding RDC data. 

We have utilized REDCRAFT and a few other auxiliary programs to achieve our 

objectives. The following sections detail our methodology and approach in treatment of 

dynamics.   

2.3.3.1 Residual Dipolar Couplings 

Residual Dipolar Couplings (RDCs) have been observed as early as 1963[57] and 

have been acquired for a number of structure determination studies including small 

molecules[128, 129], carbohydrates[130-133], nucleic acids[111, 134-137] and 

proteins[18, 49, 93, 138-141]. The RDC interaction phenomenon has been extensively 
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reviewed in the literature[7, 142, 143]. The physical principles[57, 101] that lead to 

manifestation of RDCs, and methods inducing alignment of biological macromolecules, 

have been fully described previously[142, 144-146]. Here we briefly review those 

components utilized by REDCRAFT. In addition, we limit our discussion to nuclei with 

spin quantum number of ½ and refer to the formula in Equation 2.3.1 from which all 

mathematical derivation of the RDC interactions (for a pair of spin ½ nuclei) begin. In this 

equation, μ0 is the magnetic permeability of free space, γi and γj are gyromagnetic ratios of 

the interacting nuclei, h is Planck's constant, r is the distance separating nuclei i and j, and 

θ is the angle between the magnetic field of the NMR spectrometer and a vector connecting 

atoms i and j. 

𝐷𝑖𝑗 =
−𝜇0𝛾𝑖𝛾𝑗ℎ

(2𝜋𝑟)3
⟨
3𝑐𝑜𝑠2𝜃𝑖𝑗(𝑡)−1

2
⟩ (2.3.3) 

It is important to note that the RDC value Dij (reported in units of Hz) is a function 

of the time-dependent angle θ(t) averaged over time t, as represented by the angular 

brackets in Equation 2.3.1. This time averaging phenomenon may account for molecular 

motions caused by natural bond vibrations, internal dynamics, or overall tumbling of the 

molecule in the solution state. Mathematical transformation of Equation 2.3.1 can produce 

a computationally amiable formulation of the RDC phenomenon, as shown in Equation 

2.3.2. In this representation of the RDC interaction, v signifies the normalized orientation 

of the interacting vector, sij denotes the ijth element of the Saupe order tensor matrix, Sii 

represents the principle order parameters, and ξ symbolizes the Eulerian rotation matrix 

that relates the molecular frame to the principal alignment frame. The remaining constants 

have been subsumed into a single constant, Dmax. 
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𝐷 = 𝐷𝑚𝑎𝑥�̄�
𝑇 ⋅ (

𝑠𝑥𝑥 𝑠𝑥𝑦 𝑠𝑥𝑧
𝑠𝑦𝑥 𝑠𝑦𝑦 𝑠𝑦𝑧
𝑠𝑧𝑥 𝑠𝑧𝑦 𝑠𝑧𝑧

) ⋅ �̄� = 𝐷𝑚𝑎𝑥�̄�
𝑇 ⋅ 𝜉(𝛼, 𝛽, 𝛾) ⋅ (

𝑆𝑥𝑥 0 0
0 𝑆𝑦𝑦 0

0 0 𝑆𝑧𝑧

) ⋅ 𝜉𝑇(𝛼, 𝛽, 𝛾) ⋅ �̄� 

 (2.3.4) 

Within recent years, various methods have been proposed[23, 69, 70, 82, 127, 147-

152] to estimate the optimal order tensor from either a given set of RDCs, RDCs and a 

structure or just a structure. Each of these diverse approaches exhibit some advantages over 

the other existing methods but in practice the most accepted method of obtaining an order 

tensor is based on Singular Value Decomposition (SVD) analysis. SVD approach to 

calculation of order tensor is fast and provides the mathematically provable optimal 

solution. Despite its optimality, it poses certain challenges[45, 115, 119] when used in the 

context of studying dynamics from RDC data, which impose the use of structure-based 

methods of estimating order tensors[151]. Our presented methodology eliminates these 

challenges and resorts back to the use of more accepted SVD-based calculation of order 

tensors. 

2.3.3.2 Categories of dynamics 

To better facilitate the discussion of dynamics we enumerate three distinct 

dimensions of dynamics, namely: Temporal, Structural and Alignment as shown in Table 

2.2. Along the Structural mode of dynamics, we define two categories of Rigid-body and 

Uncorrelated modes. Similar to previous definitions[12, 13, 122], Rigid-body dynamics is 

defined as dynamical regions that maintain a constant internal structure as a function of 

time, while the Uncorrelated dynamics is defined as alteration of structure as a function of 

time. Therefore, it is meaningful to describe the structure of a dynamical region if it is 

engaged in a Rigid-body dynamics, and not so for an Uncorrelated mode of dynamics. The 
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temporal dimension of dynamics can be defined by two categories of Discrete-state and 

Continuous-state dynamics. The distinction between the two is solely based on the 

temporal occupancy of conformational states that are visited during the trajectory of the 

dynamics. The Alignment mode of dynamics can be described by homogeneous and 

heterogeneous modes of alignment where the homogeneous mode of alignment assumes 

fixed alignment of the protein (within the same alignment medium) as a function of 

conformational changes. In contrast, in the heterogeneous mode of dynamics, alignment of 

a protein is altered as a function of the conformational changes. In principle all eight 

combined modes of dynamics should be possible with examples of all four combination of 

Structural and Temporal modes of dynamics having already been identified and presented 

in the literature[3, 96-98, 153]. In this report we investigate the combination of Rigid-body, 

Discrete-state dynamics with the explanation that it represents biologically most likely 

event, and that the remaining three modes (combinations of Structural and Temporal 

modes) can be approximated as a Rigid-body and Discrete-state dynamics in some 

favorable instances. The discussion related to the alignment mode of dynamics needs to be 

deferred for our future work as it is extensive and therefore distracting at this point. 

Therefore, in our simulations we assume a homogeneous alignment of the protein. 

Table 2.2. Different modes of dynamics 

Structural Temporal Alignment 

Rigid-body Continuous-state Homogeneous 

Uncorrelated Discrete state-state Heterogeneous 
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The foundation of the presented work is based on reconstructing the trajectory of 

dynamics using discrepancies of order tensors reported from the static and dynamic 

domains of a protein.  Therefore, the first step in the study of dynamics is the mathematical 

formulation of effects of dynamics on order tensors. Equation 2.3.3 formulates changes in 

the observable order tensor (denoted as 𝑆) as a function of time (or dynamics). In this 

equation the variable j denotes the jth alignment medium and integration is performed over 

the entire life of the dynamics. It can be argued that biological systems perform cyclical 

motions (returning to some original state), therefore the lifetime of a dynamic event can be 

treated as finite and periodical. Discrete approximation of the continuous function shown 

in Equation 2.3.3 can be developed as shown in Equation 2.3.4. In this formulation δt serves 

as the discrete time interval of the observation, which if selected appropriately can provide 

an accurate approximation of a temporally continuous motion. This equation can be further 

simplified based on relative occupancies in different states of the dynamics. This 

simplification can take place if the temporal occupancy of the conformational continuum 

is primarily in a small number of stable states (transient states are negligible). Under these 

conditions Equation 2.3.5 can be formulated and adopted in recovery of the primary 

conformational states of a Discrete-state dynamics. In this equation the entity Si
j denotes 

the order tensor reported from the ith conformational state within the jth alignment medium 

where ρi is the relative occupancy of the ith state. The second constraint shown in this 

equation enforces the fact that the sum of all relative occupancies should equate to 1 (or 

100%). 

𝑆�̂� = ∫ 𝑆𝑗
∞

𝑡=0
(𝑡)𝑑𝑡  (2.3.5) 

𝑆�̂� = ∑ 𝑆𝑗
𝑛
𝑘=1 (𝑘 ⋅ 𝛿𝑡)  (2.3.6) 



www.manaraa.com

 68 

{
𝑆�̂� = ∑ 𝜌𝑖𝑆𝑗

𝑖𝑛
𝑖=1

Subject to: ∑ 𝜌𝑖
𝑛
𝑖=1 = 1

  (2.3.7) 

2.3.3.3 REDCRAFT 

REDCRAFT[16, 17, 20, 46, 88] is designed for structure determination purely from 

orientational restraints. REDCRAFT deploys a powerful search mechanism that is 

significantly different from traditional optimization techniques, allowing for the same 

accuracy in recovery of structures compared to other algorithms while utilizing less data. 

The REDCRAFT software package has been previously described in depth and it is 

available for download from http://ifestos.cse.sc.edu. In this section we will present only 

the features that are relevant during the study of structure and dynamics of proteins. 

REDCRAFT is well suited for the study of structure and dynamics because of its 

key feature of calculating the optimal structure by appending one residue at a time. This 

elongation process is consistent with the biological synthesis of proteins and allows for 

progressive examination of the rigidity assumption of a protein's structure. The averaging 

of order tensors due to internal dynamics leads to differences in the observed order tensors 

between the static and rigid components of a molecule. The differences of the order tensors 

result in an inherent inability to produce a structure that will consistently satisfy the 

orientational constraints between the static and dynamical regions. These inconsistencies 

can be identified from REDCRAFT's dynamic-profile that is produced during a structure 

calculation session. Dynamic-profile is formally presented and further discussed later.  

The second feature of REDCRAFT that further enables study of structure and 

dynamics of proteins, emanates from its ability to conduct fragmented reconstruction of a 

protein. In general, structure of a given protein can be created in numerous fragments 
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because of data availability, biological importance, or study of dynamical regions that 

undergo Rigid-body dynamics. Study of dynamic-profile allows for identification of hinge 

regions, which can then be used to establish different dynamical domains of a protein for 

fragmented calculation of structures. The dynamic-profile has been described previously 

but to facilitate a better discussion, it is briefly discussed in section 0. Relevant to the 

current discussion, fragmented structure calculation that can be initiated based on analysis 

of a dynamic-profile allows structure reconstruction of all rigid components of a protein, 

although they may be dynamical with respect to each other. Once the individual structure 

of the rigid fragments within a protein are reconstructed, they can be assembled under a 

dynamics scheme that reconcile the differences in the observed order tensors across all 

alignment media.  

2.3.3.4 Dynamic Profile of REDCRAFT 

The first step in investigating internal dynamics of a protein is to identify the hinge 

regions that give rise to the internal movement. It is also important to establish the structural 

mode of dynamics (Rigid-body versus Uncorrelated) after discovery of the onset of 

dynamics. Previously presented dynamic-profile that is produced by REDCRAFT can 

assist in discovery of the onset of dynamics and structural mode of dynamics. An example 

of a typical dynamic-profile for a static protein is shown in Figure 2.17. Under typical and 

non-anomalous conditions, a dynamic-profile will start with a very low RDC-rmsd score 

(due to initial lack of RDC data), will monotonically increase until arriving at a maximum 

value, followed by a final phase that is characterized by a plateauing of the RDC-rsmd 

score that is in agreement with the data acquisition error. Any significant departure from 

this typical profile is indicative of some anomalous conditions. The anomalous conditions 
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may consist of non-standard amino acid geometries (e.g. cis-Pro, impermissible dihedrals, 

non-standard bond lengths, etc.), existence of internal dynamics or mis-assignment of the 

RDCs, to name a few. Of particular interest to the discussion presented here, we will 

observe alternations of dynamic-profile as the means to identify the onset of dynamics and 

distinguish different structural modes of dynamics. Dynamic profiles can be generated for 

forward (N-terminus to C-terminus) or backward (C-terminus to N-terminus) analysis of a 

given protein. The forward and backward dynamic-profiles can help to corroborate the 

same anomalous regions with different degrees of certainty.  

 

Figure 2.17. Example of a typical dynamic-profile for the protein 1A1Z in the absence of 

internal dynamics with simulated ±1Hz of uniformly distributed noise.   

 

Analysis of REDCRAFT's dynamic-profile takes place in two steps. The first step 

serves to identify any form of structural anomalies by observing any deviation from a 

typical profile. The second step utilizes the ability of REDRAFT to perform a fragmented 
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structure determination of a protein. Once the point of anomaly is established, a new 

session of structure determination can be initiated a few residues in advance of the point of 

anomaly. The behavior of the dynamic-profile will be indicative of the structural mode of 

the dynamics. In section 0 we present results that demonstrate the use of this approach in 

discovery of onset and identification of structural mode of dynamics. Our exploration will 

consist of simulated Rigid-body dynamics and Uncorrelated dynamics using the protein 

1A1Z as the target of our investigations. The specifics of the simulated dynamics are 

discussed in section 0.  

2.3.3.5 Theoretical treatment of dynamics 

The following steps (also shown in Figure 2.18) describe our overall strategy in 

calculation of structure and characterization of dynamics: 

1. Proceed in structure calculation with REDCRAFT under the assumption of structural 

rigidity. 

2. Upon identification of internal dynamics from dynamic-profile, embark on fragmented 

study of dynamics for each region that exhibits internal structural rigidity. 

3. After successful completion of fragmented structure calculation, establish the rigid and 

dynamical fragments through comparison of observed order tensors in all alignment 

media. Comparison of order tensors across different domains can establish static 

domains and dynamic domains. Fragments can be collected into relative rigid domains 

based on the similarity of their order tensors.  

4. Construct models of dynamics that successfully explain the differences of the observed 

order tensors between the static and dynamic domains in all alignment media.  
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Figure 2.18. A diagram of illustrating our strategy for simultaneous characterization of 

structure and dynamics using REDCRAFT. 

 

The scientific basis, technical requirements and procedures to establish steps 1-3 

have been previously described and can easily be accomplished through the use of 

REDCRAFT and REDCAT software packages. However, additional theoretical 

formulations and procedural analyses are required for step 4. To facilitate the development 
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of procedures to accomplish the objectives in step 4, we first submit that in the case of a 

two domain dynamics, it is possible to designate one of the domains as the static domain 

and the other as the dynamic domain. Although at first the principle of relative motion may 

appear to introduce some ambiguity to this designation, the presence of a third entity (the 

external magnetic field) against which all tumbling, vibrational motions and internal 

dynamics are observed, disambiguates the designation. It is therefore possible to uniquely 

designate one domain as the dynamical and the other as the static domain by simply 

observing the General Degree of Order[5] (GDO) for each domain. Furthermore, Equation 

2.3.5 can be used as the basis of expansion to accommodate reconstruction of the individual 

discrete states as shown in Equation 2.3.6. In this equation the term Sa
j denotes the anchor 

order tensor in alignment medium j and it signifies the order tensor that would have been 

observed if the dynamical domain was fixed and void of dynamics. The anchor order tensor 

can be obtained from the static domain of the protein (domain with the highest GDO). The 

term ξi represents the Eulerian transformation (with its three corresponding angular 

arguments) that maps the Rigid-body structure of the dynamical domain from any arbitrary 

molecular frame to the frame that defines the ith state of dynamics. The average observable 

order tensor on the left-hand side of the equation can be obtained within REDCAT by 

analyzing the structure of the dynamical domain using the experimentally acquired RDCs. 

Equation 2.3.6 can be used to formulate the objective function shown in Equation 2.3.7, 

which can be used to obtain solutions for four unknowns (relative occupancy and three 

Euler angles) that define each state of a given discrete dynamics. In this equation the 

symbol ║.║denotes magnitude of the difference-matrix by summing the square of its 

elements. This equation can be repeated for each alignment medium, which will contribute 
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five additional independent equations to the overall system of equations. In total, defining 

n discrete dynamical states will require 4n-1 (relative occupancy of the last state can always 

be computed by one minus the sum of all the other occupancies) degrees of freedom, while 

m alignment media will provide 5m number of equations. Therefore, a viable solution can 

be obtained so long as the criterion shown in Equation 2.3.8 is satisfied. Note that an 

important fact in combining information across all alignment media is that relative 

occupancies and orientation of the dynamical domains with respect to the static domain 

remain unchanged across all alignment media. We have used least-square 

minimization[154, 155] routine available in Maple 14 software package to obtain the 

solution to the Equation 2.3.7.  

{
𝑆�̂� = ∑ 𝜌𝑖𝑆𝑗

𝑖𝑛
𝑖=1 = ∑ 𝜌𝑖 ⋅ 𝜉(𝛼𝑖, 𝛽𝑖, 𝛾𝑖) ⋅ 𝑆𝑗

𝑎 ⋅ 𝜉′(𝛼𝑖, 𝛽𝑖, 𝛾𝑖)
𝑛
𝑖=1

Subject to:∑ 𝜌𝑖
𝑛
𝑖=1 = 1

  (2.3.8) 

 

𝑓(𝜌1..𝑛, 𝛼1..𝑛, 𝛽1..𝑛, 𝛾1..𝑛) = {
∑ ‖𝑆�̂� − ∑ 𝜌𝑖 ⋅ 𝜉(𝛼𝑖, 𝛽𝑖, 𝛾𝑖) ⋅ 𝑆𝑗

𝑎 ⋅ 𝜉′(𝛼𝑖, 𝛽𝑖, 𝛾𝑖)
𝑛
𝑖=1 ‖𝑚

𝑗=1

Subject to:∑ 𝜌𝑖
𝑛
𝑖=1 = 1

  (2.3.9) 

5𝑚 ⩾ 4𝑛 − 1  (2.3.10) 

2.3.3.6 Testing and Validation 

Our general testing and validation strategy have relied on the use of simulated RDC 

data. The overall process consists of generating average sets of RDC data from different 

models of dynamics, reconstructing fragmented structures based on steps 1-3 as listed in 

section 0, followed by reconstructing the dynamical states from the recovered Euler 

rotations (after solving Equation 2.3.7). Following reconstruction of the discrete states, 

validation is based on quantifying the backbone deviation between the reconstructed and 
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target states (described further in section 0). In our experiments we utilized synthetic data 

from an 83 residue FADD protein (PDB ID 1A1Z) and the 213-residue human DGCR8 

core (PDB ID 2YT4). The use of simulated data during the early stages of method 

development is critical. The use of simulated data to test a new method of recovering 

dynamical states is a common practice and has certain advantages. Prior knowledge of the 

dynamics (ground-truth) allows for meaningful comparison of the recovered results to the 

known model of dynamics to establish the accuracy of the recovery method. Furthermore, 

simulated scenarios allow for systematic exploration in strengths and limitations of the 

presented methodology. In the following subsections the models of dynamics, summary of 

synthetic data and structure validation procedure used in our experiments are described in 

detail.  

2.3.3.6.1 Simulated data 

 Simulation of RDC values for an arbitrary pair of nuclei requires a-priori 

knowledge of an order tensor. A Saupe order tensor can be expressed via a 3×3 matrix, or 

by providing principal order parameters Sxx, Syy, and Szz and rotational Euler angles α, β, 

and γ. In this report we use the latter formulation of an order tensor. Using the atomic 

coordinates, order parameters and Euler angles, REDCAT was used to produce computed 

RDC values. We have utilized a number of order tensors in our investigations to passively 

observe the dependency of our method on order tensors. Tables 2.3-5 summarize the order 

tensors used for each of our models of dynamics. 
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Table 2.3. Order parameters used for the complex 2-state model of dynamics. 

 Sxx Syy Szz α β γ  

S1 -3.00×10-4 -5.00×10-4 8.00×10-4 0º 0º 0º 

S2 2.00×10-4 5.00×10-4 -7.00×10-4 -40º -50º 60º 

 

Table 2.4. Order parameters used for the simulated 2-state arc motion and the simulated 

DGCR8 dynamics. 

 Sxx Syy Szz α β γ 

S1 3.00×10-4 5.00×10-4 -8.00×10-4 0º 0º 0º 

S2 -4.00×10-4 -6.00×10-4 1.00×10-3 40º 50º -60º 

 

Table 2.5. Order parameters used for the complex 3-state model of dynamics. 

 Sxx Syy Szz α β γ  

S1 3.00×10-4 5.00×10-4 -8.00×10-4 0º 0º 0º 

S2 2.00×10-4 5.00×10-4 -7.00×10-4 -40º -50º 60º 

S3 -7.00×10-4 -1.00×10-4 8.00×10-4 20º -40º 20º 

 

Simulated RDC data may also be modified to include the addition of simulated 

error or noise. Unless specified otherwise, all simulated RDCs are accompanied by a 

uniform random change in the RDC values in the range of ±1 Hz, and contain the following 

set of RDCs: [C'-N, N-H, C'-H, Cα-Hα]. To simulate different percentages of occupancies 

Equation 2.3.9 was used to average the sets of RDCs from different conformations, where 

ρi  and RDCi
j denote the relative occupancy and RDC values for vector j in the ith 

conformational state respectively. In this equation n is the total number of discrete 

conformational states. 

{
𝑅𝐷𝐶𝑗 = ∑ 𝜌𝑖 ⋅ 𝑅𝐷𝐶𝑗

𝑖𝑛
𝑖=1

Subject to: ∑ 𝜌𝑖
𝑛
𝑖=1 = 1

 (2.3.11) 
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2.3.3.6.2 Simulated 2-state dynamics 

Our exploration of 2-state dynamics consisted of two different models of dynamics. 

Both models were implemented on the FADD protein (PDB-ID 1A1Z) as an example of a 

helical protein. The helical nature of this protein presents unique challenges when studied 

by RDC data due to the parallel orientation of their N-H bonds. The two models of 

dynamics that have been included in this report consisted of an arc motion and a more 

complex motion resulted from rotation about two axes. The 2-state models of arc motion 

were explored by rotating the φ angle of the protein 1A1Z at the 71st residue (denoted by 

φ71) by 15˚, 30˚ and 60˚. Consequently, in the arc model of dynamics, this protein is 

segmented into two domains: a static domain that consists of residues 1-69 and the dynamic 

domain that consists of residues 73-83. An example of arc motion with 60˚ perturbation of 

φ71 is shown in Figure 2.19. In this figure the segment of the protein illustrated in blue is 

the static region while the red and green domains represent the two conformations of the 

dynamical region. It is noteworthy that this partitioning introduces additional challenges 

since the dynamical region is a single helix.  

 

Figure 2.19. 2-state arc motion of the protein 1A1Z by 60º perturbation of the φ71 

dihedral at residue 71.  
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The more complex motion (example shown in Figure 2.20) was created by 

performing a 30˚ rotation of the φ and ψ angles at residue 58 (30˚ rotation of φ58 followed 

by 30˚ rotation of the ψ58) of the protein 1A1Z. In this case the two domains were defined 

as residues 1-56 (the static region) and residues 60-83 (dynamic region).  In Figure 2.20 

the blue portion of the structure represents the static region, while the red and orange 

portions of the structure represent the two alternate states of the dynamical region. 

 

Figure 2.20. 2-state complex motion created by altering the dihedral angles of the protein 

1A1Z at residue 58.   

 

2.3.3.6.3 Simulated 3-state dynamics 

Our exploration of the 3-state dynamics consisted of building on the complex model 

of 2-state dynamics. Here the two states from the complex 2-state motion were used as 

states one and two of the complex 3-state motion. The third state was created by rotating 

the φ angle of residue 58 (only φ58) by 60˚ from the original structure. As in the case of the 

complex 2-state motion, the domains were defined by residues 1-56 and 60-83 as the static 

and dynamic domains respectively. The simulated three conformations are shown in Figure 
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2.21 where the red, green, and orange fragments illustrate states 1, 2, and 3 of the dynamical 

domain while the static domain is illustrated in blue.  

 

Figure 2.21. 3-state complex model of dynamics with blue representing the static domain 

and the dynamic domain shown in red, green and orange correspond to the 

conformational states 1, 2 and 3 respectively.  

 

2.3.3.6.4 Two-state jump model involving RBD2 of DGCR8 

MicroRNA (miRNA) biogenesis follows a conserved succession of processing 

steps, beginning with the recognition and cropping of a miRNA-containing precursor (pre-

miRNA) hairpin from a large primary miRNA transcript (pri-miRNA) by the 

Microprocessor. This Microprocessor consists of the nuclear RNase III Drosha and the 

double-stranded RNA-binding domain (dsRBD) protein DGCR8 (DiGeorge syndrome 

Critical Region protein 8) which is absent in individuals with DiGeorge syndrome. DGCR8 

functions as an RNA-binding protein, yet the current crystal structure of the protein (PDB 

ID 2YT4) would require pronounced bending of the pro-miRNA substrate to engage both 

distant RNA-binding domains (RBDs). To address the biological implications of possible 

interdomain motions, we resorted to a molecular dynamic simulation of the DGCR8 protein 

to produce a more plausible RNA-binding model. Conceivably, a more likely scenario is 
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that DGCR8 adapts[156, 157] to allow for the RNA to bind by moving its two domains in 

tandem to create a favorable conformation to facilitate RNA binding. The motion between 

the two domains of DGCR8 is currently thought to be akin to a butterfly flapping its wings, 

with the linker region in between two RBDs as the mechanism of motion. To simulate this 

motion, rigid body dynamics was performed on 2YT4 using XPLOR-NIH. However, due 

to the dynamical nature of the protein, 2YT4 contained several gaps in various loop regions 

(residues 497-499, 584-591, 643-648, and 702-720) which impeded MD simulation. These 

gaps were remedied by the use of the I-TASSER[80, 158, 159] structure modeling tool. 

The resulting modeled structure exhibited 0.5Å of structural difference with respect to 

2YT4 and contained no structural gaps. Using the complete structure, 50000 steps of rigid 

body dynamics were performed with step size of 0.001 psec in a 400K bath temperature by 

keeping RBD 1 (residues 17-95) and RBD 2 (residues 126-203) rigid while permitting the 

linker region to fluctuate. The starting and ending frames of the trajectory were used as the 

two states with the RBD 1 of both frames superimposed to create a two-state jump motion 

for the RBD 2.  The resulting two states are shown as the red and green structures in Figure 

2.22 respectively. The orientational deviation between the two dynamical states was found 

to be 5.4Å. Average sets of RDC data were computed from the two conformations using 

the order tensors shown in Table 2.4 with ±0.5Hz uniformly distributed random noise 

added to the computed RDCs. These sets of RDCs were used for reconstruction of 

structures by REDCRAFT in a procedure highlighted in section 2.3.3.5. 
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Figure 2.22. Two conformations of DGCR8 generated from Molecular Dynamics 

Simulation. RBD1(the static domain) is shown in blue, the linker region in purple and the 

two states of RBD2 are shown in red and green. 

 

2.3.3.6.5 Validation of results  

Traditional method of reporting results for reconstructed structure of a protein is 

based on the measure of backbone-root-mean-square-deviation (bb-rmsd). In this 

application the simple use of bb-rmsd was not sufficient to report our findings since it 

would have generated results biased in favor of our method. Therefore, a more stringent 

approach was required in order to preserve relative orientation of a protein's fragments. 

Complete validation of the recovered structures in this report was comprised of three 

consecutive steps. The first step consisted of assembling the individual structural 

components including the different conformations of the dynamical region. Assembly of 

different conformational states was accomplished by utilizing the Euler angles that were 

obtained from minimization of the objective function shown in Equation 2.3.7. These Euler 

angles facilitated the correct orientation of the conformational domains with respect to the 

static domain. Furthermore, because information from more than one alignment medium 
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was used, any existing orientational degeneracies[160] (e.g. inversion degeneracy, etc.) 

were automatically resolved. It is important to note that upon the completion of this step, 

while the individual components of the protein were in correct orientational relationship 

with respect to each other, they may have exhibited a substantial translation in space.  

During the second step of the validation, the target structure (including all of its 

conformational states) was rotated to a comparable orientation with respect to the 

reconstructed structure to serve as a template for measurement of the bb-rmsd similarity. 

During this step we have used MolMol[161] visualization software to optimally 

superimpose the static domain of the target protein onto the static domain of the 

reconstructed structure through rotational and translational modifications. Completion of 

this step provided a measure of backbone similarity between static domain of the target 

and reconstructed structures. The third step of our evaluation consisted of establishing the 

orientational accuracy of the reconstructed conformations for the dynamic domain by 

allowing only translational modifications (disallowing orientational modification) of the 

domains. Calculation of bb-rmsd based on optimized translation and disallowing rotational 

modification was performed by the software backbone that is included within the 

REDCRAFT software package. It is important to note that the reported bb-rmsd measures 

are an upper-bound estimates. It is beneficial to mention that the backbone software is 

capable of calculating bb-rmsd between two structures in three different ways: with no 

optimization (as is), translation optimized, translation and rotation optimized.  

2.3.4 Results and Discussion 

In the following sections we provide results demonstrating the effectiveness of our 

approach in treatment of structure and dynamics of proteins. Our results first focus on the 
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ability of REDCRAFT to accurately identify the onset of dynamics and allude to the 

structural mode of the dynamic. Next, we present our results in reconstruction of 

conformations from two and three state dynamics. We conclude our results with a 

discussion of limitations of the presented work and anomalies related to the study of 

dynamics from RDC data.  

2.3.4.1 Discovery of onset of dynamics and structural mode of dynamics from dynamic-

profile of REDCRAFT 

As the first example in utility of the dynamic-profile, we present the case of 2-state 

dynamics. Here we utilized the dynamical model presented in section 2.3.3.6.2 (two states 

generated through perturbation of φ71) and utilized the averaged RDCs to perform a 

forward and reverse structure calculation of the protein 1A1Z. An example of the dynamic-

profile of a 2-state dynamic can be seen in Figure 2.23(a). In this figure the blue and red 

profiles correspond to the forward and reverse structure calculations respectively. As it can 

be seen from Figure 2.23(a), and in contrast to the typical profile shown in Figure 2.17, an 

anomalous increase has manifested in the vicinity of residue 71 on both forward and 

reverse sessions of REDCRAFT.  This is consistent with the model of dynamics that was 

used during this exercise. While both forward and reverse analyses exhibit an increase in 

the RDC score of the dynamic-profile, this phenomenon is more prominently observed in 

the case of the reverse structure determination than the forward. This inequality arises 

because in the case of forward run, the anomalous region is discovered after 73 residues 

and RDC data from only 11 residues exhibit inconsistencies with the remainder of the 

protein. This small portion will have a relatively smaller affect in perturbation of the RDC 

score reported by REDCRAFT. In contrast a much larger discrepancy is observed in the 
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case of reverse folding of the protein since a much larger portion of the data contributes to 

the observed inconsistencies.  

A similar exercise was conducted for a 3-state dynamics (described in section 0) by 

altering the backbone dihedrals at the 58th residue.  Figure 2.23(b) illustrates the dynamic-

profile of this 3-state model of dynamics. Consistent with the model of dynamics, the 

dynamic-profile identifies the onset of dynamics at around residue 57-58. However, unlike 

the previous exercise and since a larger portion of the protein is undergoing dynamics, an 

approximately equal increase is observed in the dynamic-profiles of the forward and 

reverse structure calculation instances.  

  

(a) (b) 

 Figure 2.23. An example of the dynamic-profile for (a) 2-state model of dynamics 

and (b) 3-state model of dynamics  

 

 The above two examples demonstrate the ability of REDCRAFT in identifying the 

onset of internal dynamics via the use of dynamic-profile analysis. Structural mode of 

dynamics (Rigid-body versus Uncorrelated) can also be established by the use of 

fragmented study of a protein structure in REDCRAFT. In this context, structure 

calculation can be terminated prior to the onset of dynamics, and structure calculation of a 
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new fragment can be initiated a few residues past the onset of dynamics. Analysis of the 

dynamic-profile of the new fragment can help in establishing the structural mode of 

dynamics. The dynamic-profile of the new fragment undergoing Rigid-body dynamics will 

exhibit a typical pattern (similar to Figure 2.17) since it is internally rigid and consist of a 

structure that is internally static as a function of time. On the other hand, the Uncorrelated 

dynamics will exhibit a monotonically increasing score that indicates the lack of any 

consistent structure as a function of time. Figure 2.24(a) and Figure 2.24(b) illustrate 

examples of these two modes of dynamics simulated at φ58 (in the case of rigid-body 

dynamics) and residues 58-83 (in the case of Uncorrelated dynamics). The dynamic-profile 

of the second fragment, for the case of Rigid-body dynamics that is shown in Figure 

2.24(a), exhibits a normal behavior indicating successful reconstruction of a coherent 

structure. Dynamic-profile for the case of an Uncorrelated dynamics is shown in Figure 

2.24(b) and it clearly exhibits a monotonically increasing behavior that indicates absence 

of a coherent structure. In the case of Rigid-body dynamics, upon recovering the structure 

of each domain, a measure of relative dynamics between the two domains can be 

established based on comparison of their corresponding order tensors.  
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(a) (b) 

Figure 2.24. Dynamic profile of a sample (a) Rigid-body dynamics and (b) 

Uncorrelated dynamics. 

 

2.3.4.2 2-state jump dynamics 

 As the first step in evaluating our approach to recovery of dynamical states, we 

resort to the arc motion of the 2-state dynamics described in Section 2.3.3.6.2. Here we 

explored alterations of φ71 by 15˚, 30˚ and 60˚ with different occupancies of the two states. 

We also evaluated our approach in recovery of 2-state dynamics of the complex motion 

(also described in section 2.3.3.6.2). Results of these experiments are shown in Tables 2.6 

and Table 2.7 respectively. The results shown in these tables are segmented into sections 

corresponding to different states of occupancies. Our investigation in state occupancies 

starts with 50% occupancy of the first state and extends into 90%, in increments of 10%. 

The rows titled “Minimum” correspond to the lowest error in the minimized objective 

function (shown in Equation 2.3.7) in units of Hz corresponding to an N-H vector. A value 

approximately less than tenth of the experimental error (in this case 0.1Hz for 1Hz error) 

indicates successful reconstruction of the domains. In this table “Conformation” denotes 

the two states of dynamics, “BB-RMSD” corresponds to the backbone similarity of the 
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reconstructed states, and “Relative Occupancy” corresponds to the recovered occupancy 

of each state.  

We begin the discussion of our results with the case of 60˚ arc motion (shown in 

Table 2.6). In general, all states of the dynamics were reconstructed very accurately 

including orientation of the states and relative occupancies. In some instances (such as 

50/50) the relative occupancies were in error by as much as 13%. The only exercise that 

exhibited anomalous outcome was the case of 90/10. Here the first conformation was 

reconstructed with high degree of accuracy (0.37Å with respect to the target protein) while 

the second state was created with bb-rmsd of 9.4Å with respect to its corresponding state. 

Our explanation for this behavior is that the low relative occupancy of this particular 

scenario marginalizes the perturbation of RDCs due to dynamics. The small perturbation 

of RDCs (in comparison to the ±1Hz noise) has therefore rendered its effect moot, thus 

collapsing the 2-state motion to a single rigid state.  Since the effect of the second state is 

negligible, it was reconstructed in nearly an arbitrary orientation giving rise to its high bb-

rmsd to the target conformation. This phenomenon is observed in other instances that are 

discussed in the future sections.  

 To further investigate the sensitivity of our method with respect to the magnitude 

of motion, the rotation of φ71 was reduced from 60° to 30°. The results of these experiments 

are shown in Table 2.7 and are very similar to that of the 60° dynamics except for the case 

of 80/20. In this case the second state was not reconstructed with sufficient accuracy. We 

speculate the reason for this inconsistency is the combination of a smaller angle of rotation 

and lower relative occupancy. It appears that at only a 30° rotation, a state with less than 

20% occupancy may be subsumed into the original state as occurred in the case of 90/10 
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in the previous example. This explanation is further corroborated by the low relative 

occupancy of the second state and low objective function error.   

 To further investigate the effect and behavior of our approach on small and 

negligible motions, the case of 15˚ arc motion was examined. Although there existed 

internal variation of the second domain, the REDCRAFT dynamic profile does not identify 

internal dynamics, indicating the absence of any anomalous behavior from the perspective 

of the RDC data. Despite this finding we proceeded to reconstruct the two orientations and 

the results are shown in Table 2.6. The overarching observation that can be concluded from 

the results in this table is: accurate reconstruction of the first state, and nearly complete 

failure in reconstruction of the second state (both orientation and relative occupancy). In 

all of the cases highlighted in Table 2.6, the relative occupancy of the second state is very 

low with high objective function values (relative to the cases of 30˚ and 60˚). This is 

indicative of a negligible 2-state motion being subsumed into one rigid state, which is 

consistent with the results for 60˚ arc motion and 90/10 occupancy exercise. Both of these 

exercises help to establish the boundaries for the information content of the RDC data when 

simulated (or acquired) with ±1Hz of error. In summary, the particular instance of 15° 

motion did not provide sufficient alteration of RDCs (and therefore order tensors) to 

indicate the existence of internal dynamics at any relative occupancy. 
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Table 2.6. Results of 2-State 60º, 30º and 15º arc motion experiments. 

Target 

Occupancies 
 60º Arc Motion 30º Arc Motion 15º Arc Motion 

50/50 

Minimum 
9.13×10-11 (0.23 

Hz) 
5.12×10-11 (0.17 

Hz) 

7.×10-10 (0.65 

Hz) 

Conformation 1 2 1 2 1 2 

BB-RMSD 0.93Å 1.02Å 0.46Å 0.44Å 0.78Å 7.8Å 

Relative 

Occupancy 
0.63 0.37 0.45 0.55 0.96 0.04 

60/40 

Minimum 
1.25×10-10 (0.27 

Hz) 
7.27×10-11 (0.2 

Hz) 

1.9×10-10 (0.34 

Hz) 

Conformation 1 2 1 2 1 2 

BB-RMSD 0.38Å  0.42Å 0.5Å 0.58Å 0.73Å 9.6Å 

Relative 

Occupancy 
0.61 0.39 0.66 0.34 0.85 0.15  

70/30 

Minimum 
1.31×10-10 

(0.28Hz) 
1.12×10-10 

(0.26Hz) 

3.48×10-10 

(0.46Hz) 

Conformation 1 2 1 2 1 2 

BB-RMSD 0.44Å 0.45Å 0.65Å 2.00Å 0.68Å 9.3Å 

Relative 

Occupancy 
0.72 0.28 0.88 0.12 0.88 0.12  

80/20 

Minimum 
2.37×10-10 (0.37 

Hz) 
9.4×10-11 (0.23 

Hz) 

7.13×10-10 (0.65 

Hz) 

Conformation 1 2 1 2 1 2 

BB-RMSD 0.59Å 1.52Å 0.66Å 5.2Å 0.66Å 9.1Å  

Relative 

Occupancy 
0.85 0.15 0.95 0.05 0.88 0.12  

90/10 

Minimum 
2.29×10-10 (0.37 

Hz) 
4.49×10-11 (0.16 

Hz) 

1.14×10-9 

(0.82Hz) 

Conformation 1 2 1 2 1 2 

BB-RMSD 0.37Å 9.4Å 0.5Å 6.9Å 0.58Å 5.2Å 

Relative 

Occupancy 
0.896 0.103 0.98 0.02 0.95 0.05 
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The results from the complex 2-state model are shown in Table 2.7 and convey an 

outcome consistent with the case of arc motion. Both conformations were reconstructed 

with high degree of accuracy despite the complexity of the dynamics. However, it can be 

seen that as the relative occupancy of the second state decreases, accuracy of its 

reconstructed orientation deteriorates. This deterioration in performance is observable in 

the case of 80/20 and clearly so in the case of 90/10. In both cases the first state was 

reconstructed with reasonable accuracy while the reconstruction of the second state 

deteriorated as a function of occupancies. A relative occupancy of 10% can be seen as 

almost negligible in the course of a dynamic movement when using RDCs with ±1Hz of 

error.  

Table 2.7. Results for 2-state complex dynamics experiments. 

50/50 

Minimum 2.27×10-10 (0.36 Hz) 

Conformation 1 2 

BB-RMSD 0.76Å 0.83Å 

Relative Occupancy 0.42 0.58 

60/40 

Minimum 1.6×10-10 (0.31 Hz) 

Conformation 1 2 

BB-RMSD 1.1Å 1.4Å 

Relative Occupancy 0.47 0.53 

70/30 

Minimum 1.4×10-10 (0.29 Hz) 

Conformation 1 2 

BB-RMSD 1.2Å 1.6Å 

Relative Occupancy 0.53 0.47 

80/20 

Minimum 6.04×10-11 (0.19 Hz) 

Conformation 1 2 

BB-RMSD 0.69Å 2.3Å 
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Relative Occupancy 0.66 0.34 

90/10 

Minimum 1.7×10-10 (0.32 Hz) 

Conformation 1 2 

BB-RMSD 0.83Å 6.33Å 

Relative Occupancy 0.95 0.05 

 

In summary, results in Table 2.6 seem to indicate that at just 15˚ of movement, our 

approach is able to reconstruct one of the states (State 1) with reasonable accuracy, but 

fails to reconstruct the second state. However, it can be observed that when the motion is 

extended to a 60˚ or 30˚ movement (results shown in Table 2.6), then both states can be 

reconstructed with reasonable accuracy so long as the relative occupancies exceed 20%. 

The general explanation for both cases is that the contribution of dynamics is less than the 

experimental noise, and therefore meaningful calculations are moot. 

2.3.4.3 3-state jump dynamics 

Results of the 3-state complex dynamics are shown in Table 2.8 for a number of 

different relative occupancies. Similar to the case of 2-state, the relative occupancies of 

each exercise are listed on the first column of this table. The “Minimum” value corresponds 

to the lowest value (in units of Hz scaled to N-H vectors) obtained from minimizing the 

objective function shown in Equation 2.8. This value helps to establish the success of the 

general approach; minimum values in the vicinity of tenth of the experimental noise 

indicate successful reconstruction of the states. 
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Table 2.8. Results for 3-state dynamics experiments.  

50/25/25 

Minimum 2.9×10-11 (0.13 Hz) 

Conformation 1 2 3 

BB-RMSD 0.95Å 1.9Å 0.67Å 

Relative 

Occupancy 
0.42 0.32 0.26 

34/33/33 

Minimum 2.6×10-11 (0.12 Hz) 

Conformation 1 2 3 

BB-RMSD 1.4Å 0.38Å 1.3Å 

Relative 

Occupancy 
0.25 0.41 0.34 

50/30/20 

Minimum 3.4×10-11 (0.14 Hz) 

Conformation 1 2 3 

BB-RMSD 1.08Å 1.5Å 0.4Å 

Relative 

Occupancy 
0.32 0.34 0.34 

60/30/10 

Minimum 7.8×10-11 (0.21 Hz) 

Conformation 1 2 3 

BB-RMSD 0.64Å 1.3Å 1.3Å 

Relative 

Occupancy 
0.55 0.35 0.1 

 

As seen in Table 2.8, our presented method has successfully reconstructed the 

conformational states and rates of occupancies with less than 2Å in structural resolution. 

We note that there is a higher variability in the recovered measure of relative occupancies; 

variations as much as 0.19%.  

2.3.4.4 Recovery of DGCR8 discrete state dynamics 

When combined with an appropriate analysis tool, RDC data can provide a 

significant reduction in data requirements. As an example, we present results for the 

analysis of structure and reconstruction of a simulated 2-state model of dynamics by using 
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only a fraction of the entire structure. In this exercise the structure calculation of the protein 

2YT4 was limited to only a portion of the static and dynamic domains. More specifically, 

residues 17-41 were used as representative of the static domain, and residues 130-142 

represented the dynamical region. Here we can establish the relative dynamics of two 

domains that are separated from each other (in space and sequence) without the need to 

study the entire protein. This exercise also helps to gain some insight as to the size of a 

fragment that is needed for successful reconstruction of dynamics. Each of the domains 

were reconstructed with bb-rmsd of 1.5Å to their corresponding portion of the target 

protein respectively. Analysis of the order tensors strongly supported the existence of 

internal dynamics and results of our conformational reconstruction are summarized in  

Table 2.9. Based on results shown in this table, the two states of dynamics were 

reconstructed with reasonable degree of accuracy. Figure 2.25 provides an illustration of 

these results for the two recovered states of DGCR8. 

Table 2.9. Results in recovery of DGCR8 discrete state dynamics. 

  

50/50 

Minimum 2.2×10-10 (0.36 Hz) 

Conformation # 1 2 

BB-RMSD 1.5Å 1.5Å 

Rate of 

Occupancy 
0.54 0.46 
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(a) (b) 

Figure 2.25. Reconstructed states from the DGCR8 experiment. Opaque renderings 

denote the fragments of the protein reconstructed. (a) The first conformation of the target 

structure is shown in red and the corresponding conformation is shown in yellow. (b) The 

second conformation of the target protein is shown in green and the corresponding 

reconstructed conformation is shown in orange.  

2.3.4.5 Modeling of 2-state dynamics as 3-state dynamics or a 3-state as 2-state 

 Results presented in the previous sections assume a-priori knowledge in the number 

of dynamical states. It is reasonable to consider the cases where the number of stable 

conformations is not known prior to analysis. In this case, a parsimonious approach can be 

employed to assist in the discovery of the appropriate jump states. More specifically, a 2-

state dynamics can serve as a starting point of any investigation. Total number of 

conformational states can be explored incrementally until a satisfactory result is achieved. 

A satisfactory result is quantified by fitness of experimental data to the computed ones to 

within the data acquisition error.  To demonstrate this approach, analysis of 3-state 

dynamics described in section0was utilized. Based on this parsimonious approach, the 

reconstruction of conformations will proceed based on the assumption of a 2-state 

dynamics. Results of the 2-state recovery of the 3-state dynamics are shown in Table 2.10. 

In principle, and in agreement with the results shown in this table, the incomplete modeling 

should be problematic and manifest itself in an unacceptably high objective function value. 
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In Table 2.10, the left-most column indicates the true relative occupancies of each state 

during the simulation of dynamics. The information marked as “Minimum” denotes fitness 

of the objective function (Equation 2.3.7) scaled to the units of Hz for N-H vectors. 

Increasing the number of states to 3, produces the results shown in Table 2.10 with 

minimum values of the objective function that clearly indicate successful recovery of 

states. The cases of 60/30/10 and 50/30/20 exhibited potentially acceptable objective 

functions because they can be treated as a two state dynamics by disregarding the state with 

relative low occupancies (10% or 20%). This serves as another affirmation that relative 

occupancies of less than 20% are potentially negligible within the framework of ±1Hz of 

experimental error.  

Table 2.10. Results for modeling of a 3-state dynamic as a 2-state. 

True Occupancies Minimum  

34/33/33 2.99×10-8 (4.21 Hz) 

50/25/25 4.097×10-7 (15.56 Hz) 

50/30/20 5.8×10-9 (1.85 Hz) 

60/30/10 6.9×10-9 (2.02 Hz) 

 

 

Conversely, a 2-state dynamics can be forced to be modeled as a 3-state. In theory, a 

2-state dynamics should be classified as a 3-state dynamic where two of the recovered 

states correspond to the two conformations, and a phantom third state with a relative 

occupancy of 0%. To illustrate this point two experiments in which 2-state models of 

dynamics were forced into a 3-state recovery. Recovery of 3-state dynamics requires RDC 

data from at least three alignment media. The three alignment media shown in Table 2.5 

along with the 2-state arc motion and 2-state complex motion described in Section 2.3.3.6.2 
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were utilized in this exercise. In both cases equal 50% relative occupancies were used to 

simulate the RDC data.  

Table 2.11. Results for simulating 2-state dynamics in our 3-state dynamic eq. 

 

Arc 

Motion 

(50/50/0) 

Minimum 3.15×10-13 (0.013 Hz) 

Conformation 1 2 3 

BB-RMSD 0.7Å 0.63Å 4-7Å 

Rate of 

Occupancy 
0.47 0.50 0.03 

Complex 

Motion 

(50/50/0) 

Minimum 1.6×10-10 (0.31 Hz) 

Conformation 1 2 3 

BB-RMSD 0.66Å 0.6Å 9-10Å 

Rate of 

Occupancy 
0.44 0.55 0.01 

 

 As can be seen from Table 2.11, Conformation 3 in both the arc and the complex 

motions have occupancy rates of 0.03 and 0.01 respectively. These conformations 

correspond to neither state 1 nor state 2 of their respective model of dynamics. An 

occupancy rate of 1-3% is in practice negligible, making the corresponding state clearly 

inconsequential.  Figure 2.26 shows the results from the 2-state arc motion with the 

extraneous conformation shown in yellow along with the two conformations (1 and 2 in 

Table 2.11) that align well with the original model of dynamics.  
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Figure 2.26. The resulting conformations from forced modeling of a 2-state dynamic as a 

3-state are shown here. Fragments shown in red and green correspond to the two actual 

conformational states while yellow depicting the phantom irrelevant conformation with 

1% relative occupancy.   

 

 The results of these experiments are important in the sense that they reveal 

interesting insights into the presented method. They show that inclusion of more data 

improves the preciseness in the reconstruction of domains as evidenced by the low bb-rmsd 

of the reconstructed states in Table 2.11. In addition, it can be reasonably argued that in 

application to natural examples of dynamics where the true number of discrete states are 

not known, our method appears to successfully identify the proper number of states that 

describes a model of dynamics.   

2.3.4.6 Limitations in recovery of discrete state dynamics 

In section 0 the inability of the presented work to reconstruct conformations with 

relative occupancies less than 10% was demonstrated. In addition, the limitation in 

reconstructing conformational changes that are imposed by as small as 15° of arc motion 

was also demonstrated. Both of these limitations are due to the overall contribution of 

dynamics (either relative occupancy, or small motion) relative to the experimental 
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precision of data acquisition. Therefore, in the absence of any other information, these 

types of limitations diminish the efficacy of investigating dynamics from RDC data.  

Approaches that rely on analysis of order tensors to recover conformational 

information are inherently limited by an upper-bound in the number of recoverable states. 

More specifically, these limitations arise from the fact that order tensors span a five 

dimensional space (degrees of freedom of an order tensor) and therefore regardless of the 

number of alignment media explored, no more than five independent alignment tensors can 

be obtained[162]. Considering the relationship shown in Equation 2.3.8, this imposes a 

limitation on our approach of recovering a maximum of six conformations.  

 Finally, some mechanisms of dynamics are more pathological than others. There 

are instances of dynamics that diminish and limit the information content of RDC data and 

therefore impede the process of structure reconstruction. For example, previously 

described effects of a C3 motion (three conformational states related by 120° rotations 

about a common axis) will converge the averaged anisotropic alignment (of any alignment 

medium) to an axially symmetrical (rhombicity of 0) order tensor with the primary 

orientation along the axis of motion. This convergence of order tensors may impose some 

degeneracies, which can cause challenges during the structure determination by RDC data.  

2.3.5 Conclusions 

RDCs can be an indispensable source of information in exploration of structure and 

dynamics of macromolecules. Here, we demonstrate that conformational changes of 

internal domains can be reconstructed to within atomic resolution. In addition, the relative 

occupancies of each state can be assessed with sufficient accuracy. We show successful 

applications to reconstruct dynamics consisting of a conical rotation, rotation about two 
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axes, and more realistic motions derived from an MD simulation. While we reliably 

reconstructed dynamics involving two and three states with high accuracy, our 

investigations revealed some inherent limitations associated with the extraction of 

dynamics from RDC data. In general, dynamics of small magnitude or states with low 

occupancies which cause perturbations of RDCs comparable to experimental noise cannot 

be reconstructed in a meaningful way.  Typically, states within conformational ensembles 

populated less than 10% do not sufficiently perturb the corresponding RDCs. Similarly, 

arc motions smaller than 15º produce insufficient changes of RDCs and prohibit a 

meaningful investigation of dynamics. However, further studies are needed to describe and 

exploit the non-linear nature of RDC phenomenon. The inherent non-linearity of RDCs 

may profoundly influence the results. For example, the same magnitude of rotation about 

a sensitive axis (e.g. magic angle) may produce far larger perturbation of RDCs than some 

other insensitive axis of rotation.  

Degeneracies associated with C3 dynamics (a scenario involving three equally 

populated states with C3 symmetry) that potentially impede RDC-based studies of structure 

and dynamics are particularly interesting. In such instances the anisotropy imposed by two 

independent alignment media converge to two very similar and symmetrical order tensors, 

thereby effectively reducing the accessible information to a single symmetric order tensor. 

Such unfavorable conditions inevitably interfere with studies of structure and dynamics 

and require comprehensive mathematical and theoretical treatments that are beyond the 

scope of this study in order to be rectified. However, such anomalies primarily occur within 

simple models of dynamics (such as arc motions) and seem to be absent in more complex 

cases.  
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In the presence of sufficient amount of RDC data, the presented method can be 

extended to describe conformational ensembles characterized by as many as six states. The 

maximum limit of six states is fundamentally imposed by the dimensionality of order 

tensors. Our future efforts will focus on better understanding degeneracies that may be 

encountered during the study of dynamics and will aim to reassess the problem independent 

of order tensors. 

Finally, we reported outcomes of our approach in scenarios where the number of 

discrete conformational states is either under- or overestimated. When encountering an 

underestimated number of conformational states, the unacceptably high fitness of the 

objective function from Equation 2.3.7 will serve as a clear indicator. This mechanism will 

allow reexamination of the problem with an adapted number of discrete states. In the case 

of overestimated number of states within the ensemble, we have demonstrated that the 

conformational states are correctly reconstructed with an additional phantom state that is 

identified by a low relative occupancies. Such phantom states can simply be disregarded, 

and the primary states utilized in a simplified model. However, simply assuming the 

maximum number of states and subsequently disregarding the phantom states by default is 

not advised. First, reconstruction of a higher number of states requires experimental RDC 

data from more alignment media. While it is always encouraged to acquire as much RDCs 

as possible, this may not always be feasible. Second, collectively a few phantom states (all 

individually negligible) may conceivably represent one real state. In general, it is therefore 

recommended that phantom states be eliminated one at a time followed by reevaluation.  
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Chapter 3: Summarization of Major Contributions for the Creation and 

Improvements of Methods to Calculate Protein Structure and Dynamics

3.1 Improving the Usability of REDCRAFT 

  The first objective of this part of my research was improve the existing software 

REDCRAFT to enhance its abilities to calculate protein structure. A full description of the 

work completed can be found in section 2.1. The following is a summary of the major 

achievements. First and foremost, the interface to the software has been updated to include 

a modern GUI and the code refactored to allow the users to import a larger variety of 

experimental data. These updates were aimed at increasing ease of use and spur more 

widespread adoption of the software. Runtime analysis of the software before and after 

refactoring was completed and concluded there to be no significant reduction in the speed 

or accuracy of calculation. Secondly several of its computational features were enhanced. 

The decimation routine, responsible for reducing the solution space of the algorithm, was 

updated to dynamically scale its sampling of clusters instead of statically selecting samples 

based on user input (pseudocode in Appendix A). This update has now allowed for more 

complicated datasets to be utilized in the software. For example, in the previous version of 

REDCRAFT, structure calculation using highly erroneous data would quickly exhaust the 

RAM of even some of the most well-equipped computers (64 GB). With the new version 

of decimation, structures are able to be characterized using these datasets in a matter of 

hours. Lastly, Stage-I of the REDCRAFT algorithm was improved by adding the ability to 
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incorporate of dihedral angle restraints mined from a newly created database (PDBMine 

discussed in section 2.2). In previous versions of REDCRAFT Stage-I used the entire 

allowed Ramachandran space. Even though this removed some of the theoretical solution 

space (-180 to 180) it still left a significant area for the algorithm to search through. Using 

these enhanced Ramachandran spaces mined from PDBMine, protein structures were 

computed from sets of experimental data (RDCs) that were previously thought impossible. 

For example, it has long been accepted in the field of NMR spectroscopy that structure 

calculation from RDCs alone required using data from at least two alignment media to 

resolve inherent rotational degeneracies. Using REDCRAFT alongside mined dihedral 

angle restraints, a high-resolution structure (within 2.4 angstroms) was calculated using 

just one set of N-H RDCs. Further work is needed in this study to confirm these results in 

a larger variety of proteins but if irrefutably confirmed, this could be a major turning point 

for the field of NMR and spur a more cost-effective pipeline of structure calculation.  

In addition to the published works contained in Chapter 2 of this document, I have 

made other noteworthy contributions to the field of protein structure calculation. Using the 

enhanced version of REDCRAFT, I have been able to characterize a novel protein, 

Pf2048.1 (PDB IDs: 6E4J, 6NS8). At the time of its calculation, it had less than 11% 

sequence similarity with any other known protein. It’s inclusion into the Protein Databank 

means a reduction in the existing gaps in the human proteome.  

3.2 Data Driven Dihedral Angle Restraints 

The second objective of this part of my research was to create a minable version of the 

Protein Databank. Whereas the full description of results can be found in section 2.2, the 

following is a summary of the major achievements made to this end. The protein databank 
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(PDB) was dissected and used to create the PDBMine database. The new database occupies 

over 300 GB of space and contains atomic and dihedral level information for over 400,000 

proteins. Whereas the original database platform was MySQL (as reported in the published 

work), it has since been updated to a binary file in which queries are made by using a jump 

table to index into various locations. The wrapper to the database is written in python and 

allows for easy and flexible mining of the data. The results from various queries of this 

database have been shown to greatly enhance protein structure prediction methods. This 

has been reported in several papers (sections 2.1 and 2.2) as well as in publications 

currently in preparation. Currently, rudimentary website is hosted at the following URL: 

https://www.ifestos.cse.sc.edu/PDBMine and allows for mining of only the dihedral 

angles. The website implements a RESTful interface for handling queries from users and 

returns queries of ~100 amino acid sequences at a window size of 7 in approximately 5 

minutes. Future development of the user interface is underway to enable the full set of 

features available the python command line interface.  

3.3 Creation of RDC-based Model of Protein Dynamics 

The third objective of this part of my research was to formulate an analytical 

method of describing atomic level models of protein dynamics. The following is a 

summary (full work in section 2.3) of the major achievements made to this end. An 

objective function was formulated and utilized to reconstruct 2-state and 3-state discrete 

dynamic systems. This serves as the first ever atomic level modelling of discrete protein 

dynamics. The objective function takes advantage of the averaging effect seen in RDCs 

collected from dynamical protein in NMR experiments. In these systems, there are two 

clear domains of the protein moving with respect to one another. In our experiments, one 

https://www.ifestos.cse.sc.edu/PDBMine
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domain was arbitrarily chosen as the “static” domain and the other was designated the 

“dynamic” domain. An order tensor was then calculated for each domain and the objective 

function was then used to relate the two domains together using a series of Euler rotations 

and occupancy rates.  This model showed success on models with motions as small at 10 

degrees and rates of occupancy as low as 20 percent. Although the work presented here 

was all completed on synthetic data, many real-world systems exhibit similar motion to the 

motion that was simulated and are then therefore likely to also be able to be characterized 

using this model.  

3.4 Suggestions for Future Work 

 My suggestions for future work in this line of research would focus on additions to 

the theoretical models, enhanced testing on real world protein systems and expansion of 

the PDBMine interface. The model created to characterize discrete dynamics can be 

improved in several ways. The first of which is to investigate and resolve seemingly 

inherent degeneracies of the objective function. During the course of investigation, a few 

anomalies were encountered wherein a certain combination of order tensors, degrees of 

motion and occupancy rates caused the function to get stuck in local minima. The second 

suggestion would be to apply the model to real world models of dynamical protein systems. 

There are several models that exist however RDC data is not currently available to study 

them using this model. Lastly, the interface of PDBMine should be extended to provide a  
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Chapter 4: Introduction to Smoking Detection 

4.1 Smoking Behavior and How it is Traditionally Studied 

Any study of a specific human behavior will rely, in some form, on self-reporting. In 

the realm of smoking research, it is no different. Many behavioral studies centered around 

smoking still rely on some form of survey that the participant needs to complete on a given 

day describing parameters such as: number of cigarettes smoked, time of the day when 

most smoking occurred. This traditionally was performed utilizing pen-and-paper logs that 

the participants would return to the researchers at the end of the trial period. This method 

led to a high degree of data loss from human error (either forgetting to log or logging an 

event incorrectly). In recent years, mobile technology has been utilized to facilitate a more 

conducive self-reporting experience and minimize retrospective recall[170]. A Google 

form replaced the pen-and-paper logging method, allowing researchers to view data on 

more regular intervals to ensure that participants were adhering to protocol. Mobile 

technology also has the capability of providing detailed contextual information that can be 

used to better inform prediction models. For instance, smart watch devices have both an 

accelerometer as well as GPS. Using these sensors an intelligent system could be devised 

to listen for key events, such as consumption of fast food, that may trigger a more 

destructive behavior such as smoking. In addition, location and time information can be 

used in combination to create a probabilistic model of behavior and therefore inform the 

system when a person is most likely to partake in a destructive behavior ahead of time such 
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that “in time” intervention can be administered. Although the use of mobile devices and 

web-based reporting techniques improve the quality of participant-reported data along with 

providing more contextual information, on their own, they fail to mitigate the burden of 

self-reporting and the errors associated with subjective reports[166, 171, 172].  

One highly effective way to mitigate the burden of self-reporting is to collect behavioral 

data in the laboratory setting. Clinical Research Support System for Laboratories (CReSS) 

is widely used for studying smoking in a laboratory setting. The device collects several 

measures of smoking behavior including puff duration, distance between puffs (Inter Puff 

Interval), time to first puff, and puff volume. However, the CReSS device is an expensive 

(~$5,500) machine that interferes with the natural smoking experience. When using the 

CReSS, the cigarette is fitted into a port on one side of the device and smokers inhale 

through a plastic mouthpiece.  Participants often complain about how smoking through the 

CReSS feels strange and does not provide the same sensations as experienced through 

naturalistic smoking. In addition, the study of smoking with CReSS forces the laboratory 

confinement of the experiment. The study of smoking in laboratory settings provides 

skewed data, since the participants may prefer to complete the experiments quickly, in 

uncomfortable circumstances and times of the day. Use of mobile devices, specifically 

wearable devices, hold the potential to eliminate these limitations.  

4.2 Previous Work 

Previous works have shown the possibility of detecting smoking gestures using in-

house designed wearable devices[173, 174]. These techniques have shown great promise 

with both high accuracy and low false positive rates. However, they require the use of 

devices not commonly found in a typical household, such as multiple 9-axis inertial 
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measurement units (IMU’s), respiration bands that must be worn across the chest, and two-

lead electrocardiograph sensors worn under clothes. The use of these uncommon, 

cumbersome, and relatively expensive devices severely limits mass deployment for daily 

observations or use by the research community. Recently, smartwatches have been 

explored as a platform for observing people’s daily activities. Specific to the smoking 

activity, StopWatch[175] and SmokeBeat[176] independently confirmed the possibility of 

utilizing smartwatches in the study of smoking. StopWatch reported a precision rate of 

86% and a recall of 71% in detection of smoking in natural settings where as SmokeBeat 

reported performance of 82% (due to its commercialization publications related to 

SmokeBeat are limited in detail). The StopWatch algorithm employs a decision tree model 

and requires preprocessing of the data for feature engineering. While feature engineering 

and data transformation may provide certain advantages, they impose additional compute 

cycles that will be taxing on the limited battery resources of smartwatches.  

4.3 Research Objectives 

The work presented here features the usage of only raw accelerometer data and a 

combination of shallow and deep neural networks to detect and characterize smoking in a 

variety of ways. Of primary interest was detection of smoking in natural settings for real 

time intervention and the development of a system to characterization of smoking behavior 

to replace laboratory devices and enable the study of smoking in natural settings. Details 

of each objective are outlined in the following sections.  

4.3.1 - Puff Level Binary Detection of Smoking 

 A puff is defined by the motion of the hand from a resting position to the lip and 

then back to the resting position. To detect these gestures, a variety of ANNs trained using 
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accelerometer data collected from various smoking and non-smoking events were 

designed, tested and deployed. The main objective for this level of detection was to perform 

binary classification (smoking or non-smoking) in order to facilitate real time intervention 

measures. This binary classification (“smoking” vs. “non-smoking”) was completed using 

a traditional ANN. The network was trained with smoking data collected in a laboratory 

setting. The “true positive” input to the network were windows of three seconds of 

accelerometer data that contained a full puff gesture. The “true negative” input to the 

network was extracted from a variety of non-smoking activities such as eating, drinking 

and exercising. The network was then tested rigorously using laboratory collected data as 

well as data from real smokers in natural settings. In this preliminary, proof of concept 

work, data from only one real smoker was used for validation. This data was then annotated 

by a highly trained researcher and then tested using the network previously trained using 

the lab setting data. The results for this work can be found in the section titled: “5.2 

Recognition of Smoking Gesture Using Smart Watch Technology.” These results were 

originally published in 2016 at the International HIMS conference.  

4.3.2 - Session Level Detection of Smoking 

The main objective in this area of research was to identify smoking at the session, or 

full cigarette, level. The implementation of this objective partially relies on the success of 

the first objective. In some studies, session detection is much more valuable than detection 

at the puff level. For instance, many cessation studies simply focus on the number of 

cigarettes smoked in a given day. For this type of study, the puff level detection does not 

have to be as precise. Session level detection is also important in the context of other types 

of tobacco related research such as the effectiveness of warning labels. In these instances, 
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the researchers are interested in detecting a full session of smoking (completion of one 

cigarette) before initializing a short survey to the smoker to inquire about the label that was 

included in the cigarette package.  

The main first challenge of this objective was that a smoking session was not 

analytically defined. Therefore, the first task was to define a session. Utilizing both subject 

matter experts and empirical data collected from real smokers, a model of a smoking 

session was developed. This model is defined as a collection of three or more puffs that 

occur with an inter-puff interval of less than four minutes in an overall time frame of less 

than 8 minutes. In addition, two sessions must be separated from one another by five or 

more minutes. Session level detection was accomplished by utilizing the results from the 

puff level detection in combination with a rule-based AI that will confirm the adherence of 

the ANN output to the model defined.  

 Evaluation of session level detection was performed by recruiting ten heavy 

smokers and continuously collecting smartwatch accelerometer data from them in real-

time. The participants also utilized a Google Form as a mechanism of marking the start and 

end times of each smoking session throughout the day. Using the data, the session model 

and the output of the ANN from the first objective, the accuracy of session level detection 

was computed. The results from this work can be found in the section titled: “5.3 Detecting 

Smoking Events Using Accelerometer Data Collected Via Smartwatch Technology: A 

Feasibility Study” which was originally published in JMIR uHealth mHealth in 2017. 

4.3.3 – Automated Characterization of Smoking Topography 

The next research objective was the characterization of smoking topographies. This 

task required an approach different to that of the previously described binary puff 
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classification due to its added complexity. For example, to accurately calculate the puff 

duration, at least two points of each puff will need to be detected: the hand-to-lip gesture 

and the hand-off-lip gesture. The duration can then be calculated as the time between these 

two measures. To accomplish this the data was reformulated into classification of “mini” 

gestures. After successful reannotation of the data, a conventional neural network was 

employed that had an output size of four (“hand-to-lip”, “hand-on-lip”, “hand-off-lip” and 

“non-smoking”). The output of this network was then fed to a rule-based AI that modelled 

the smoking behavior as a state transition model. As a prerequisite to deploying a full neural 

network on the problem, proof of concept study was performed. The results of which can 

be found in the section titled “5.4 Clinical Quantitation of Smoking Topography using 

Smartwatch Technology”. These results are currently under review at JMIR. In this work, 

smoking data collected from a smartwatch was compared to that of data collected from the 

CReSS smoking device. Several measures such as duration and inner puff interval were 

compared using R2 values.  

4.3.4 - Resolving Ambiguities in Accelerometer Data Based on the Position of 

Smartwatch on Wrist  

The final research objective was to develop a translational mechanism that would 

account for the rotational discrepancies in accelerometer data based on the position of a 

smartwatch on the wrist. This is a very important step in processing the data for use in a 

ANN. There are eight distinct configurations of watch placement on the wrist which lead 

to variations in the accelerometer data. Instead of insisting on a particular configuration to 

be used across all users, a transformation technique will be investigated to rotate all data 

into a common frame to be used within the network. The transformation technique can be 
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evaluated in a straightforward fashion. Data will be collected in each possible configuration 

and then transformed. The resulting data will then be aligned and compared to data 

collected in a given common frame. The common frame that will be assumed for this 

evaluation will be right side up in a pronated position on the left wrist. The results of this 

study are shown in the section entitled: “5.5 Resolving Ambiguities In Accelerometer Data 

Due To Location Of Sensor On Wrist In Application to Detection of Smoking Gesture.”
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Chapter 5: Contributions to the Study of Automated Smoking Detection2 
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Section 5.1: Casey A. Cole, Bethany Janos, Dien Anshari, James F. Thrasher, Scott 

Strayer, Homayoun Valafar. 2016.  Proceedings of the International Conference on 

Health Informatics and Medical Systems (HIMS). Reprinted here with permission from 

the publisher. 

Section 5.2: Casey A. Cole, Dien Anshari, Victoria Lambert, James F. Thrasher and 

Homayoun Valafar. 2017. JMIR Mhealth Uhealth 2017;5(12):e189. Reprinted here with 

permission from publisher. 

Section 5.3: Casey A. Cole, Shannon Powers, Rachel L. Tomko, Brett Froeliger, 

Homayoun Valafar. Submitted to JMIR.  

Section 5.4: Casey A. Cole, James F. Thrasher, Scott Strayer, Homayoun Valafar. 

2017.  Contributed paper at 2017 IEEE International Conference on Biomedical and 

Health Informatics. Reprinted here with permission from the publisher. See IEEE 

copyright: https://www.ieee.org/publications/rights/copyright-policy.html © 2017 IEEE 
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5.1 Recognition of Smoking Gesture Using Smart Watch Technology 

5.1.1 Abstract 

Diseases resulting from prolonged smoking are the most common preventable 

causes of death in the world today. In this report we investigate the success of utilizing 

accelerometer sensors in smart watches to identify smoking gestures. Early identification 

of smoking gestures can help to initiate the appropriate intervention method and prevent 

relapses in smoking. Our experiments indicate 85%-95% success rates in identification of 

smoking gesture among other similar gestures using Artificial Neural Networks (ANNs). 

Our investigations concluded that information obtained from the x-dimension of 

accelerometers is the best means of identifying the smoking gesture, while y and z 

dimensions are helpful in eliminating other gestures such as: eating, drinking, and scratch 

of nose. We utilized sensor data from the Apple Watch during the training of the ANN. 

Using sensor data from another participant collected on Pebble Steel, we obtained a 

smoking identification accuracy of greater than 90% when using an ANN trained on data 

previously collected from the Apple Watch. Finally, we have demonstrated the possibility 

of using smart watches to perform continuous monitoring of daily activities.  

5.1.2 Introduction 

In the past decade, measures have been taken to warn the population about the 

dangers of smoking. While the smoking rate has decreased significantly since then, 

smoking remains the leading preventable cause of death throughout the world. 

Additionally, youth tobacco use has increased as the popularity of products such as e-

cigarettes and hookah has risen[177]. In America, 53.4% of college students have smoked 

at least one cigarette and 38.1% reported smoking in the past year[178]. Even though the 
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hazards of smoking are generally accepted, there remains many smokers who struggle to 

quit. Those who try to quit are typically middle aged and beginning to feel the adverse 

effects of smoking. Yet, on average, smokers relapse four times before successfully 

quitting[179]. Many smokers do not realize that it is normal to require multiple attempts to 

quit smoking and therefore need recurring intervention and support to aid them. Constant 

support from an individual’s community is shown to increase the likelihood of 

quitting[178]. The existence of an application (housed on a smart phone or watch) that 

would provide this constant support could greatly increase a person’s fortitude to abstain 

from smoking.  

The first step in making such an application is the ability to detect when a person 

is smoking so that the appropriate intervention can be initiated. Previous works have shown 

the possibility of detecting smoking gestures using in-house designed wearable 

devices[173, 174]. These techniques have shown great promise with both high accuracy 

(95.7-96.9%) and low false positive rates (<1.5%). However, they require the use of 

devices not commonly found in a typical household such as multiple 9-axis inertial 

measurement units (IMU’s), respiration bands that must be worn across the chest and two-

lead electrocardiograph worn under the clothes. The use of these uncommonly and 

relatively expensive devices severely limits mass deployment for daily use.  

Smart watches are becoming increasingly prevalent in common households. 

According to Apple’s website, over 5 million Apple Watches were sold in 2015 alone and 

projections into 2016 show promising growth. Other smart watch companies like Asus and 

Pebble have seen similar growth patterns from as well. By contrast to the previous methods, 
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the method explored in this study relies solely on the use of a smart watch’s built-in 

accelerometer, effectively eliminating the need to use more uncommon detection devices. 

In addition, the pairing of a smartwatch with a smart mobile device enables immediate 

alerting, engagement and recruitment of social support groups to prevent or alter one's 

smoking behavior. As the first step in this process we have examined the feasibility and 

complexity of detection of smoking gesture using smart wearable devices. Our 

investigation has included minimum data requirement and an exploration of most 

informative dimension of accelerometer sensors. Prior knowledge of the problem 

complexity will allow for a smoother transition into actual deployment of our detection 

mechanism on smart watches in the future.  

5.1.3 Background and Method 

The overall view of our study consisted of three major stages: data collection, 

training of multiple artificial neural networks for pattern recognition, and evaluation. The 

following sections provide a more detailed outline for each of these stages. 

5.1.3.1 Data Collection  

Data in this study were acquired by a non-smoking participant utilizing an Apple 

Watch (version 2.1). Using the application PowerSense (available in App Store for iOS) a 

number of individual smoking gestures (also referred as a puff) and continuous smoking 

sessions (a session that consists of multiple puffs) were recorded and analyzed. All samples 

were measured at a 50Hz sampling rate. Due to minor fluctuations in the duration of each 

gesture, the number of data points varied for each gesture. Each isolated puff pattern was 

represented by 200 interpolated data point in order to create a uniform size input set for the 

pattern recognition stage. The resulting smoking gestures are shown below in Figure 5.1. 
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The three differently colored line clusters represent each of the three dimensions of the 

accelerometer (X in blue, Y in red and Z in green). Each cluster is an overlay of all 20 

individual smoking sessions used in the training of the neural networks. Based on visual 

inspection, it is clear that the smoking pattern is very well conserved across each of the 

samples. 

 

Figure 5.1. Overlay of all single smoking gestures with the X dimension in blue, Y in red 

and Z in green. 

In addition to smoking sessions, several non-smoking gestures were also recorded. 

These gestures (seen in Figure 5.2) included drinking, scratching one’s nose, yawning, 

coughing, brushing hair behind one’s ear and rubbing one’s stomach. The selection of these 

patterns was based on activities that may be similar to smoking gesture, or ones that may 
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be present during most common smoking sessions. These gestures were including in both 

the training test and testing set. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 5.2. Overlay of all patterns collected for the following non-smoking gestures: (a) 

drinking, (b) scratching one's nose, (c) yawning, (d) coughing, (e) brushing hair behind 

one's ear, and (f) rubbing one's stomach. 

In some of these gestures, such as scratching one’s nose and yawning in Figure 

5.2(b) and Figure 5.2(c) respectively, the movement of the hand and arm clearly resemble 

an individual smoking gesture (seen in Figure 5.1). Inclusion of these gestures into the data 

set will allow for studying how well the proposed method can distinguish smoking gestures 

from other very similar gestures.  

In addition to individual gestures, longer continuous sessions were recorded. The 

continuous smoking sessions consisted of approximately 7 to 10 gestures per session. The 

non-smoking sessions included three common activities: eating, drinking and putting on 
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chapstick/lipstick. Each session was divided into 200 time step segments using a rolling 

window approach. As seen in Figure 5.3, a continuous smoking session is no more than a 

combination of individual smoking gestures seen in Figure 5.1.  

 

Figure 5.3. Example of continuous smoking session. 

Table 5.1 summarizes the total number of smoking and non-smoking gestures in 

each of the data sets and breaks down the exact amount used in each phase of the 

investigation.  

Table 5.1. Summary of data utilized in analyses. 

 
Non-smoking Smoking 

Training Set 120 20 

Testing Set 30 10 

Extended Sessions 5 5 

In order to test the applicability of the presented method across other wearable 

platforms, as well as other participants, one smoking session was acquired by a different 

participant (than the original set of data used for training) on the Pebble Time Steel used 

on Android platform. The Pebble Time Steel was selected as a second test watch due to its 
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long lasting battery life, durability, and reasonable price. A continuous smoking session 

was recorded using the AccelTool (http://mgabor.hu/accel/) App at a sampling rate of 50 

Hz. 

5.1.3.2 Pattern Recognition Via Artificial Neural Networks 

The neural network toolbox in Matlab (version R2016a) was utilized during this 

phase of our study. Levenberg-Marquardt backpropagation[155, 180, 181] was selected as 

the training algorithm in all sessions. For each training session, the data were randomly 

partitioned into 3 sets: 70% in the training set, 15% in the validation set and 15% in the 

testing set. The networks were then trained, validated and then rigorously tested for 

accuracy. The procedures for the training and validation/testing phases are outlined below.  

5.1.3.2.1 Training  

The interpolated raw data consisted of information from three dimensions (X, Y 

and Z). In order to fully identify and evaluate useful information in the data, all three 

dimensions were utilized both individually and in combination with each other. In total, 

five ANNs were created for use in this study—one for each of the three dimensions (X, Y 

and Z), one for the combination of all three dimensions (referred to as XYZ) and one for 

the average of the three dimensional data (referred to as AVG). The number of inputs for 

the X, Y, Z and AVG data sets was 200, while the input size for the XYZ data set was 600. 

In each of the neural networks the hidden layer consisted of 10 hidden neurons. A single 

output neuron was used, with zero denoting a non-smoking gesture and one signifying a 

smoking gesture.  
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5.1.3.2.2 Validation/Testing  

Validation of the appropriate level of training was accomplished using 15% of the 

excluded training dataset. The networks were further subjected to testing using several 

different data sets. The first of which was the remaining 15% of the data excluded from the 

original training set. Next, a new set of individual gestures (not included in the original 

training set) was presented to the networks. To test the method on more realistic cases, 

continuous smoking and non-smoking sessions were also presented to the networks. Lastly, 

a continuous smoking session from a different smart watch was tested on each of the ANNs. 

The results of each test set are reported in Section 5.1.3.  

5.1.3.3 Evaluation 

To measure the success of the proposed method specificity, sensitivity and total 

accuracy of each trial were observed. Specificity describes the rate at which the method is 

able to correctly classify a non-smoking event. Specificity is calculated by use of Eq 

(5.1.1), where TN and FP denote the number of true negatives and false positives, 

respectively. 

              (5.1.1) 

Sensitivity refers to the rate at which the method correctly identifies a smoking 

event and can be calculated using Eq (5.1.2), where TP represents the number of true 

positives and FN denotes the number of false negatives. 
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        (5.1.2) 

Total Accuracy is then a measure of how often the method correctly classifies both 

smoking and non-smoking gestures and is calculated by Eq (5.1.3).  

       (5.1.3) 

In this work a cutoff threshold of 0.8 (or 80%) was used above which was 

considered a successful detection.  

5.1.4 Results and Discussion  

In the following sections the results of testing the neural networks are reported. In 

each section the data set that performed the best and worst are discussed.  

5.1.4.1 Accuracy on Training Set  

For each of the data sets the corresponding neural networks was independently 

trained 10 times and the network with the highest accuracy was chosen to be used for future 

test sets. The accuracies, specificities and sensitivities described in Figure 5.4 represent the 

performance of the final trained neural networks on their respective training sets.  
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Figure 5.4. Accuracy, specificity and selectivity of the neural networks during training. 

The bars are individually labeled based on their respective training sets. 

All of the neural networks exhibited high accuracy and specificity (> 90%) with 

respect to the training set of data. In each case the network trained with the XYZ data 

performed the best and the network trained with just the Z data performed the worst. A 

visual comparison of the individual smoking gestures and the non-smoking gestures clearly 

explains Z’s poorer performance in correctly classifying smoking gestures. The Z 

dimension (in green Figures 5.1 and 5.2) exhibits very similar patterns across both smoking 

and non-smoking gestures. However, it is worth noting that the Z dimension still obtained 

a high specificity (nearly 100%) which means that it still may carry some complementary 

information, especially when identifying a non-smoking gesture.  



www.manaraa.com

 123 

5.1.4.2 Individual Gesture Detection 

In this experiment, a new set of individual gestures (smoking and non-smoking) 

were presented to the previously trained neural networks. The accuracy, specificity and 

sensitivity are reported in Figure 5.5. Accuracies were measured by forward propagating 

each of the new samples in the corresponding neural network and then recording the 

number of correct and incorrect predictions. A threshold of 0.5 was used in interpretation 

of the neural network output, that is, any output larger than 0.5 was considered as smoking 

and any output lower than 0.5 was considered as non-smoking.  

 

Figure 5.5. Accuracies, specificity and sensitivity in the individual gesture detection 

trials. 

As shown in Figure 5.5, the Y dimension performed the best with not only the 

highest accuracy, but also the highest specificity and a 100% sensitivity. The XYZ and 
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AVG data sets also performed well especially in their ability to identify smoking gestures. 

Consistent with the previous section, the Z dimension performed the worst with both a low 

accuracy and specificity as well as a 0% sensitivity rate indicating utilization of the Z 

dimension results in identification of 0/10 smoking gestures.  

To better understand the nature of false-positive classifications, contribution of 

each individual gesture was recorded and results are shown in Figure 5.6. Based on the 

results shown in this figure, the non-smoking pattern that caused the most false positives 

was coughing followed by scratching of nose and yawning. These results were expected 

due to the high degree of visual similarity of these gestures to an individual smoking 

gesture.  

 

Figure 5.6. Total number of false positives created by each non-smoking gesture. Each 

segment is labeled based on the dimension of the accelerometer data being used. 
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5.1.4.3 Continuous Gesture Detection 

In this section the results for detection on continuous monitoring of gestures are 

reported. To accomplish this objective the neural networks trained on static gestures were 

utilized. Using a running window of size 200 (without any interpolation) the continuous 

gestures were parsed into data sets for input into the networks. The classification result for 

each running window (0 denoting non-smoking and 1 denoting smoking) is plotted at the 

beginning of each running window. Figure 5.7 illustrates an example output (in purple 

before converting to a binary representation) of the neural network trained on X. Visual 

inspection of this figure clearly confirms the correlation between spikes in detection pattern 

over the regions where an apparent smoking gesture. However, there is not a trivial way to 

quantify the network’s success because it is not immediately clear where should constitute 

the start and end of a gesture. Therefore, in order to be sure to encompass the entire gesture, 

generous ranges were handpicked to describe each smoking gesture. As in the previous 

section, a cutoff of 0.5 was chosen where any output greater than 0.5 was considered 

smoking and anything below was counted as non-smoking. Specificity was measured by 

considering all other sections of the continuous gesture not within the smoking ranges.  
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Figure 5.7. Example of continuous smoking session superimposed with the output of the 

neural network trained on the X dimension. 

The averaged results across all five continuous sessions are presented in Figure 5.8 

along with error bars representing the minimum and maximum of each averaged result.  

 

Figure 5.8. Averaged accuracies, specificities and sensitivities across the five continuous 

smoking gesture detection experiments with error bars representing the respective min 

and max of each value. 
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In the continuous smoking sessions, the X dimension performed better than all other 

dimensions. The Y dimension had a better sensitivity score but this can be disregarded due 

to its low specificity score. A high sensitivity coupled with a low specificity score denotes 

that the Y dimension classifies practically everything as smoking and therefore it’s high 

sensitivity should be ignored. In this sense, Y performed the worst overall.  

In the non-smoking sessions selectivity becomes inapplicable and specificity is 

equivalent to total accuracy. therefore, only accuracies these sessions are presented in 

Figure 5.9.  

 

Figure 5.9. Accuracies for five continuous non-smoking session trials. 

Despite its superior performance in classification with continuous smoking 

gestures, the X dimension performed with an average accuracy of under 70% in the non-

smoking continuous sessions. It seems that in the presence of more complex continuous 
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gestures (like eating and drinking) the XYZ data set seems to contain the most useful 

information for correct classification. Eating sessions seemed to pose the most difficulty 

for XYZ. This could signify that eating is one of the closest gestures to smoking and can 

therefore lead to confusion in the network. In accordance with previous results, the Y 

dimension performed the worst across all the non-smoking sessions.  

5.1.4.4 Exploration of dependency on the wearable device 

As described in the Section 5.1.2.1, a continuous smoking gesture was recorded 

using a Pebble smart watch. Results were collected using the pre-existing neural networks 

that was trained on data from the Apple Watch from a different participant. Figure 5.10 

shows the smoking session recorded using the Pebble watch, which exhibit significant 

similarity to patterns shown in Figure 5.1. The outputs of the neural network using the X 

data set are shown in purple. Again, there is good correlation between the smoking gestures 

and the spikes in the output of the neural network. Figure 5.11 shows the resulting 

accuracies, specificities and sensitivities for this smoking session.  

 

Figure 5.10. Output of the neural network for the X dimension superimposed to the 

original smoking session. 
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Figure 5.11. Results for the Pebble smart watch. 

As in the previous cases of continuous smoking sessions, the X dimension 

performed the best in classifying the gestures. In the case of the Pebble watch, the Y and Z 

dimensions did equally poorly. The Y dimension classified almost everything as smoking 

and the Z dimension classified nearly everything as non-smoking.  

5.1.5 Conclusion 

The general summary of our work supports the feasibility in detection of smoking 

gestures using typical sensors available in smart watches. Based on our experiments, 

pattern recognition via Artificial Neural Networks applied to the sensor data obtained from 

smart watches can produce performances very comparable to previously reported work. 

However, the use of a smart watch is far more pragmatic in general population studies over 

the other existing technologies. Results shown in section 5.1.3.4 suggest the possibility of 

delivering an application capable of detecting smoking gesture across the general 
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population of smokers. This universal Artificial Neural Network eliminates the need to 

customize a training session per user.  

Our exploration of efficacy of individual sensor data in detection of gesture has 

produced unexpected results. The neural network trained with data from just the X 

dimension performed the best in the presence of continuous smoking gestures but when 

faced with more complex non-smoking motions, it fails and a more complete set of data is 

needed to distinguish smoking gestures. Across all the testing sets the neural network 

trained with data from all three dimensions (XYZ) did consistently well. However, the 

XYZ data set requires 600 inputs to the network whereas the X data set only requires 200. 

This is a significant reduction in data requirement which directly impacts the computational 

time of the method. For this reason, the viability of both data sets will continue to be 

investigated. 

Additional investigations are required before general deployment of such 

approaches. Continuous monitoring of data may be outside of power limitations of such 

devices and may act as a technological barrier. Our future investigations will include 

optimization of sampling rate, minimization of Bluetooth communication between the 

smart watch and the companion phone, and better assessment of the universality of the 

trained ANN.  
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5.2 Detecting Smoking Events Using Accelerometer Data Collected Via 

Smartwatch Technology: A Feasibility Study 

5.2.1 Abstract  

Smoking is the leading cause of preventable death in the world today. Ecological 

research on smoking in context currently relies on self-reported smoking behavior. 

Emerging smartwatch technology may more objectively measure smoking behavior by 

automatically detecting smoking sessions, using robust machine learning models.  This 

study aimed to examine the feasibility of detecting smoking behavior using smartwatches. 

The second aim of this study was to compare the success of observing smoking behavior 

with smartwatches to that of the conventional self-reporting. A convenience sample of 

smokers was recruited for this study. Participants (N=10) recorded twelve hours of 

accelerometer data using a smartphone and smartwatch. During these twelve hours, they 

engaged in various daily activities including smoking, for which they logged the beginning 

and end of each smoking session.  Raw data were classified as either smoking or non-

smoking using a machine learning model for pattern recognition. The accuracy of the 

model was evaluated by comparing the output with a detailed description of a modeled 

smoking session. In total, 120 hours of data were collected from participants and analyzed. 

The accuracy of self-reported smoking was ~78% (96/123). Our model was successful in 

detecting 100 out of 123 (~81%) smoking sessions recorded by participants. After 

eliminating sessions from the participants that did not adhere to study protocols, the true 

positive detection rate of the smartwatch based-detection increased to more than 90%. 

During the 120 hours of combined observation time, only 22 false positive smoking 

sessions were detected resulting in a 2.8% false positive rate. Smartwatch technology can 
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provide an accurate, non-intrusive means of monitoring smoking behavior in natural 

contexts.  The use of machine learning algorithms for passively detecting smoking sessions 

may enrich ecological momentary assessment protocols and cessation intervention studies 

that often rely on self-reported behaviors and may not allow for targeted data collection 

and communications around smoking events.  

5.2.2 Introduction 

Despite rapid adoption of many tobacco control policies around the world, cigarette 

smoking remains the greatest preventable cause of death[163]. Ecological momentary 

assessment studies are increasingly popular for understanding smoking behavior in 

context[182-184].  Studies in this area have traditionally relied on participants to self-report 

smoking behaviors in real time, which can be particularly burdensome for heavier smokers 

and result in missing or biased information if participants are not forthcoming about or 

forget smoking events[185]. In this study, a smoking event can be either an individual puff 

or an entire session, where a session is defined to be the time in which it takes to smoke a 

single cigarette. Emerging technologies that allow for passive detection of stereotyped 

behaviors like smoking may be able to decrease or eliminate reliance on burdensome and 

potentially biased self-reports to study when, how frequently, and under what 

circumstances smoking behavior occurs.  

Smartphones and, recently, smartwatch technologies have rapidly spread and are 

widely available[186]. Typical smartwatches house sophisticated sensors that accurately 

track simple activities, such as step counting. In recent years, methods have been developed 

that utilize these sensors to detect more complex activities, such as eating and drinking[187, 

188]. Previous research[173, 174, 189, 190] has shown the possibility of detecting smoking 
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using smart devices. However, these studies have employed highly intrusive devices such 

as respiration bands[174, 191] worn across the chest and two-lead electrocardiographs 

worn under the clothes to achieve high accuracy in detection. In our previous, laboratory-

based work[192, 193] we have shown that smoking can also be detected by leveraging the 

accelerometer sensor found on a typical smartwatch in conjunction with common machine 

learning algorithms.  

The utilization of smartwatches presents a nonintrusive means of smoking detection 

that potentially eliminates the need for reliance on self-reporting. The purpose of this study 

is to extend our previous lab-based work to determine the feasibility and accuracy of our 

detection method with a population of smokers wearing the device in the natural context 

of normal, daily activities.  

5.2.3 Methods 

5.2.3.1 Overview 

Adult smokers were recruited to wear a commonly available smartwatch while 

recording their daily activities, including smoking and other behaviors that are similar to 

smoking (i.e., eating, drinking). The data from these recordings were then used in a 

machine learning exercise to develop an automated gesture detection algorithm. The 

accuracy of our automated detection was compared against the self-reported information 

on activities and manual inspection of smoking session data.  

5.2.3.2 Recruitment of Participants 

Participants were recruited through flyers, which included study information and a 

link to an online eligibility survey that was accessible via a clickable URL address and a 

QR code. The survey asked about participants’ smoking behavior, as well as age, gender, 
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and contact information. Eligibility criteria included: age over 18 years, having smoked at 

least 100 cigarettes in their life, smoking more than ten cigarettes daily, and preference for 

smoking with the right hand. The flyers were posted throughout Columbia, South Carolina 

in areas where smokers were likely to congregate (e.g., coffee shops, bars), as well as online 

venues such as Craigslist. The incentive for completion of the study was a 100-dollar Visa 

gift card that was given to each participant after concluding the protocol.  

Only participants who met all eligibility requirements were contacted and invited 

to a study briefing. In the briefing, participants’ eligibility was reconfirmed with a smoke 

CO breathalyzer. A level of 8 ppm was taken as a cut-off, which is slightly higher than cut-

off levels of 5-6 ppm suggested for distinguishing smokers from non-smokers in other 

studies[194-196]. Participants were provided with an Asus Zenwatch and Android 

smartphone to complete the trial. A 15-minute tutorial was given to each participant on 

how to use the data collection app and smartwatch and how to fill in the smoking logs, 

using their smartphone to register the times when they began and finished smoking. 

Fourteen smokers attended a briefing, two of whom did not meet the criteria of 8 ppm after 

taking the smoke CO breathalyzer measure and were therefore excluded from the study. 

Of these twelve participants, data from two were inconsistent and excluded from the 

analysis because they did not follow the study procedures. In one case, the participant wore 

the watch on the left hand instead of the right hand and therefore did not collect data from 

the hand used to smoke. In the second case, large sections of data were missing due to the 

participant losing Bluetooth connectivity between their watch and their phone by moving 

more than 30 feet away from the phone. Hence, data from 10 participants were analyzed. 
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After the study was completed, these ten participants were asked to fill out a brief 

demographic survey. The survey included basic questions about age, race, ethnicity, 

gender, and intentions to quit or continue smoking.  

5.2.3.3 Data Collection and Annotation 

The data analyzed in this study consisted of the three-dimensional accelerometer 

data collected from the Asus Zenwatch (first generation). The accelerometer onboard the 

Asus Zenwatch is triaxial, and therefore is capable of recording acceleration in three 

principal axes X, Y, and Z. These three axes are situated on the watch as shown in Figure 

5.12, where the Z-axis (in green) is perpendicular to the watch face.  

 

Figure 5.12. An illustration of accelerometer axes on a typical smartwatch is shown. 

Although a few apps exist for recording accelerometer data on both Apple and 

Android platforms, none of them contained the required features, such as recording and 

transmission of the data to cloud storage or alteration of sampling frequency.  Therefore, 

we developed an app capable of recording, maintaining, and transmitting data to Dropbox 

as the means of data collection and storage across our cohort of participants. The use of a 
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customized app allowed for control over the sampling frequency of the data. During this 

investigation, a fixed sampling frequency of 20 Hz was used.  

Each participant was asked to record a total of twelve hours of data over the course 

of three days. The total of twelve hours was partitioned into seven periods: 4 one-hour 

periods, 2 two-hour periods and 1 four-hour period. The participants were instructed to 

schedule these seven periods such that each would contain at least one full smoking session. 

Due to the large data transfers occurring between the watch and the phone, the battery life 

of the watch was not able to achieve the full four hours in most cases. In these cases, the 

participants were asked to record as long as they could until the battery power was nearly 

depleted.  

In addition to the accelerometer data, the participants were instructed to record the 

beginning and end times of each cigarette in an online logbook using the provided 

smartphone. A bookmark on the phones linked to a brief Google form that served as their 

logbook. The protocol involved recording the starting timestamp immediately before 

beginning a smoking session. In addition, each participant was asked to indicate whether 

the cigarette was the first from a new pack.  After each smoking session, they were asked 

to report the end of their smoking session as well as the approximate number of puffs during 

their smoking session.  

Smoking sessions were extracted and inspected based on the start and end times 

recorded in each participant’s log entries. The duration of these sessions ranged from 2-20 

minutes in length. However, these ranges are, in some ways, misleading. For instance, 

some of the longer sessions (> 10 minutes) clearly consisted of more than one smoking 

event. This behavior is typical for chain-smokers but, as per our defined protocol, should 
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have been recorded as two separate sessions instead of one. Any other gesture that was not 

within one of the reported sessions was classified as a non-smoking session.  

5.2.3.4 A Hierarchical Approach to Detection of the Smoking Gesture 

 Machine Learning (ML) techniques have been commonly used in the broad field of 

pattern recognition. Common Machine Learning techniques consist of Naive Bayes, 

Support Vector Machine, Decision Tree, Random Forest, Artificial Neural Network as well 

as Rule-based AI, to name a few.  In this study, we have integrated Artificial Neural 

Networks, and Rule-based AI in a hierarchical fashion to improve recognition of smoking 

activity.  

5.2.3.4.1 Artificial Neural Networks (ANN) 

In this study two-layer, feed-forward Artificial Neural Networks (ANN)[19] with 

ten hidden neurons was used as the core engine for detection of smoking gestures. 

Typically, the creation of an ANN occurs in two main steps: training and validation. Details 

about the training and validation processes can be found in our previous works[192, 193]. 

In general, the ANN was trained to produce an output of 1 during the smoking gesture, and 

a 0 during all other activities. Figure 5.13 provides an illustration of a sample smoking 

session (with five distinct puffs) and the expected ideal output. In this figure, the patterns 

illustrated in blue, red and yellow correspond to the X, Y, and Z dimensions of the 

accelerometer data while the pattern shown in purple denotes the ideal output. 
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Figure 5.13. An example of a smoking session is shown. Each dimension of the 

accelerometer data is shown in blue, red and yellow. An ideal output of the ANN is 

shown in purple where each bump denotes a smoking gesture. 

5.2.3.4.2 Rule-Based AI (RB) 

Rule-based artificial intelligence constitutes the earliest form of the Machine 

Learning techniques. RB techniques can be very efficient in circumstances where the 

actions taken by the AI core can be deduced based on a set of definable rules. The 

cooperation between the ANN and RB cores can be structured in a variety of ways. In our 

study, we have chosen a hierarchical model, where ANN operates as the core of the 

smoking detection, and RB operates in a layer above the ANN. In this arrangement, the RB 

core is responsible for establishing the beginning and the end of a “puff” gesture, counting 

the number of puffs, and establishing the beginning and end of a new smoking session. The 

RB layer also addresses some of the shortcomings of our previous studies[192], where 

several non-smoking gestures (such as scratching the nose and yawning) caused high 

numbers of false positives for the ANN. By utilizing the RB layer to establish a minimum 
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number of puffs within a smoking session, single gestures such as a yawn will be 

eliminated as a smoking event. The operational directives of the RB core are described 

later in the paper.   

5.2.3.5 Training of the Artificial Neural Network 

 It is typical to train the ANN on a separate set of data than what is used during the 

validation step to establish its full functionality (to enforce generalization). This process 

eliminates the possibility of memorization[197] by the AI. Therefore, the training of the 

ANN was performed with smoking data collected from 10 volunteers that were not part of 

the data collection mentioned in the “Recruitment of Participants” section. These 

volunteers were instructed to use the same smartphone and smartwatch used in the trial to 

record smoking and non-smoking sessions in a laboratory setting. The training set consisted 

of 13 smoking sessions that were collected from 7 of the 10 participants and 12 non-

smoking sessions from 3 of the remaining subjects. The non-smoking sessions included a 

variety of activities such as eating (3 sessions), drinking (3 sessions), walking (3 sessions), 

tying shoes (1 session) and typing on a computer (2 sessions). An example of each gesture 

is shown in Figure 5.14. Inputs to the network were extracted using a 5-second rolling 

window, which resulted in a total of 177,450 smoking gestures and 174,080 non-smoking 

gestures. The smoking gestures were then coded as positive responses and the non-smoking 

gestures as negative responses. The ANN was trained and validated with this set of data, 

achieving an accuracy of 95%. Here we define accuracy to be the percentage of correctly 

predicted smoking and non-smoking gestures.  
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Figure 5.14. Examples of the following non-smoking sessions: (a) drinking, (b) eating, 

(c) walking, and (d) typing on a computer. 

 

5.2.3.6 Development of the Rule-Based AI from a General Model of Smoking Session 

Precise definition of a smoking session is critical for evaluation of a predicted 

model and development of any rule-based criteria.  Development of a template for smoking 

event is beneficial in a number of ways. First, such a definition can be used to compare the 

output from our detection mechanism to the actual smoking session recorded by 

participants. Second, the existence of such a model will help to better define the operating 

rules of the Rule-Based AI in improving the detection rates.  

A smoking session can be defined in terms of its dependent components such as the 

number of individual gestures and their time dependencies.  Figure 5.15 describes the 

model of smoking that was empirically derived based on our observations of the subjects’ 

data. Based on this model, a smoking session is described by five main parameters: 

minimum puff duration, minimum and maximum rest time between puffs, maximum 
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session duration, and the minimum number of puffs per session.  A “puff” was defined as 

the time it takes a person to raise the cigarette to their lips, inhale, and then lower their arm 

back to the resting position. Therefore, we conservatively define a minimum puff duration 

consisting of 0.75 seconds (shown in Figure 5.15(a)). Any puff shorter than 0.75 seconds 

in duration is therefore rejected as a valid puff by the RB AI system.   

A minimum of 2.5 seconds and a maximum of 4 minutes were used as the rest time 

that separates two adjacent puffs (Figure 5.15(b)) belonging to the same smoking session. 

Two adjacent puffs in violation of the minimum separation criterion were classified by the 

RB system as the same puff that was incorrectly separated from each other. 

Correspondingly, two adjacent puffs in violation of the maximum separation criterion are 

classified to belong to two separate smoking sessions.  

Finally, a smoking session was defined to consist of at least 3 puffs that satisfy the 

above gesture criteria (e.g. puffs must be longer than 0.75 seconds in duration and  more 

than 2.5 seconds and less than 4 minutes from the next puff) and not exceed 8 minutes in 

duration (Figure 5.15(c-d)). The 8-minute rule was implemented to have a higher 

precedence over all other rules. A sequence of appropriate puffs that exceed 8 minutes in 

total length is counted as two separate smoking sessions. This rule has been primarily 

implemented to address chain-smoking behavior.  

In our data, puff- duration never exceeded 5 seconds in length. Therefore, the input 

to the ANN gesture recognition system consisted of a set of accelerometer data that 

spanned 5 seconds of observation sampled at 20 Hz (100 points of data). Each set of data 

included x, y, and z components of the accelerometer, which necessitates an ANN 

architecture with 300 input points and one output point. The single output of the ANN was 
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interpreted based on a threshold of 0.85 above which signified a smoking gesture. For more 

details related to the interpretation of the ANN output please refer to the following 

work[192, 193].  

During the supervised training of the ANN, the onset and offset of the smoking 

gesture was loosely defined by the supervisor. Loose interpretation of the edge is not 

consequential since it is a very quick event (in comparison to the gesture itself) and 

therefore makes very little impact on the duration of a gesture. 

 

Figure 5.15. Model of a smoking session: a) Puff duration > 0.75 seconds, b) Maximum 

rest time between puffs < 4 minutes and minimum rest time > 2.5 seconds, c) Minimum 

number of puffs in a session = 3 puffs, d) Session duration < 8 minutes. 

 

5.2.3.7 Evaluation Techniques 

 Evaluation of automated methods for detection of smoking gestures can be 

performed at various levels of granularity. At the finest point, every sampled data point (20 
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points every second) can serve as the subject of evaluation, while at the coarsest point an 

entire smoking session can be the subject of evaluation. In this work we define our 

objective as successful detection of each smoking session.  The interpretation rules of a 

smoking session (Figure 5.15) were used to quantify the output of the smoking detection 

mechanism. The validity of each detected session was established based on comparison to 

the self-report by the subjects. A detected smoking session was categorized as a True-

Positive (TP) if it was corroborated by the timestamps of the self-report and False-Positive 

(FP) if otherwise. The true positive rate (TPR) was measured using Eq. (5.2.1) where SD 

denotes the number of detected TP sessions and ST represents the total number of smoking 

sessions reported by the participants.   

𝑇𝑃𝑅 = 
𝑆𝐷

𝑆𝑇
         Eq. (5.2.1) 

It is common to provide a measure of False Positive Rate (FPR) to form a more 

complete evaluation of a predictive system’s performance. Calculation of the FPR can be 

performed based on the Eq. (5.2.2) where NSD denotes the total number of non-smoking 

sessions that were predicted as smoking and NST denotes the total number of non-smoking 

sessions. However, in this instance proper calculation of the NST term becomes ambiguous. 

It can be shown that within a 12 hour of recording session a total of 854,400 nonsmoking 

sessions (of 8 minutes length at 20 Hz of sampling rate) can be extracted via a rolling 

window. Given that the smoking detection mechanism produced in average two false 

smoking sessions per participant, the estimated FPR rate would be 2.34x10-6. However, it 

can be argued that a more meaningful measure of FPR can be achieved based on calculating 

NST as the total number of contiguous non-smoking sessions (that is the number of 8 minute 

non-smoking sessions that have no overlap with one another). NST was calculated using 
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Eq. (5.2.3) where HT is the total number of minutes recorded sessions by a given 

participant, WS is the window size (in our case 8 minutes) and ST is the total number of 

smoking sessions recorded by the participant. Using this calculation, for a given 12 hour 

period in which a participant smoked 10 times, NST would be 80.  

𝐹𝑃𝑅 =
𝑁𝑆𝐷

𝑁𝑆𝑇
         Eq. (5.2.2) 

𝑁𝑆𝑇 =
𝐻𝑇

𝑊𝑆
− 𝑆𝑇        Eq. (5.2.3) 

5.3.4 Results 

5.3.4.1 Summary of Data 

5.3.4.1.1 Participant Demographics 

Three of the ten participants did not complete the demographic survey. Of the 

participants who completed the survey, the average age was 32, the minimum age was 27, 

and the maximum age was 46. There were four females and three males.  Six participants 

were non-Hispanic white, while one was African American. Only one participant indicated 

that they intended to quit smoking within the next six months. 

5.3.4.1.2 Participant Data 

In total, 120 hours of data were collected from the ten participants in which 123 

smoking sessions were reported. Each data file was first subjected to a low-pass filter to 

eliminate the high frequency noise caused by movements such as walking or shaking. The 

effect of the filter can be seen in Figures 5.16 and 5.17. Following the smoothing step, the 

inputs to ANN were prepared by using a rolling window of 5 seconds.  



www.manaraa.com

 145 

 

Figure 5.16. A noisy non-smoking session is shown before the smoothing filter with the 

output of the detection mechanism shown in purple. 

 

Figure 5.17. A noisy non-smoking session is shown after the smoothing filter with the 

output of the detection mechanism shown in purple. 
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 Within the 12 hours of recording, participants typically smoked 12 times. On 

average, the duration of a smoking session was 8 minutes based on the self-report data and 

5 minutes based on visual inspection of the recorded sessions.  These discrepancies were 

most likely a consequence of both the additional time required for manual entry in the self-

report protocol and human error. Requiring the participants to log their smoking session in 

an electronic form may have taken some participants a few extra minutes, thus inflating 

their reported session window.  

5.3.4.2 Evaluation Outcomes 

5.3.4.2.1 Self-Reporting Accuracy 

In total, of the 123 recorded sessions, 27 entries were missing either a start or end 

time. In these cases, a window of 8 minutes was given preceding an end time with a missing 

start time or following a start time with a missing end time. Using this metric, the accuracy 

of self-report (that is the rate of correctly logged smoking entries) was about 78% (96/123). 

However, it should be noted that we expect the self-report to be lower than the estimated 

78%. This expectation is based on close examination of the raw recorded data that would 

otherwise be impossible to ascertain from self-report data.  One such example is shown in 

Figure 5.18 where the participant did not report a clear smoking session.  However, by a 

close comparison of the recorded session to the model of smoking, one can make a 

reasonable determination that it is indeed an unreported smoking event. The omission of 

this session in the log resulted in an increase of the FPR, where it should have contributed 

to an increase in the TPR. The opposite of this phenomenon has also occurred; that is, a 

smoking session was reported in a given period yet upon careful inspection no valid 

smoking event was found in the recorded data (an example is shown in Figure 5.19). If 
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both of these phenomena were included in the calculation of the self-report accuracy, then 

it would drop to 71% (88/123 correctly reported sessions).  

 

Figure 5.18. This session was not reported by the participant but is an unmistakable 

smoking session with 13 clear puffs.  

 

Figure 5.19. This session was reported as a smoking session, but no clear smoking 

gestures can be identified. 
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5.2.4.2.2 Detection Accuracy 

The results of the automated smoking detection mechanism are shown in Tables 

5.2 and 5.3. Surprisingly, the evaluation of the results was not as intuitive as expected.  Our 

initial approach to evaluation (first entry in Table 5.2) was to compare the outcomes of the 

automated detection mechanism to that of self-reported smoking. However, this approach 

presumes 100% accuracy of self-report, for which we have cited some contradictory 

examples (refer to the previous section). If we assume that self-report is 100% accurate, 

then real errors in self-report (see previous section) lead to underestimating true positive 

detection rates and overestimating false positive rates. It is therefore paramount to examine 

and categorize the sources of discrepancy between the two methods. To that end, we define 

the following categories of discrepancies: “No Smoking,” “Improper Use,” “Abnormal 

Gesture,” and “True False Negative.” All subsequent investigation of the self-report data 

was performed by visual inspection of the recorded signals. All detection estimates will be 

adjusted incrementally as each source of error is eliminated. The modified results are 

shown in various rows of Table 5.2. 

The first category of “No Smoking” denotes no visual presence of a smoking event 

during the reported smoking period (an example is shown in Figure 5.18). Two such 

sessions belonged to one participant. These sessions were excluded from the total number 

of self-reported smoking sessions, which results in a new TPR of 82% (100 out of 121).  

 The second category, “Improper Use” was one of the biggest contributors in 

reducing the TPR in this study. “Improper Use” denotes the condition where the participant 

did not wear the watch as dictated by the protocol of the study (either not on the right wrist 

or not in the protonated position). This condition can easily be identified and 
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corrected[193], although the correction mechanism was not implemented and incorporated 

into this study. A total of 9 sessions were identified via visual inspection to be in violation 

of proper adherence to the study-protocol and can therefore be excluded from the study. A 

corrected TPR value of 89% (100 out of 112) can be estimated after elimination of these 

violations. 

The third category, “Abnormal Gesture” denotes the occurrence of smoking 

gestures that cannot be reproduced in the laboratory settings. These gestures have a clear 

periodicity that is consistent with smoking behavior but have no other resemblance to our 

database of smoking gestures. Such conditions may be indicative of smoking in unusual 

positions such as smoking while lying in the face-down position (possibly from the edge 

of the bed) or hanging upside down. Various reclined positions, laying down in the face-

up position, or lying down on left or right side were investigated without any success in 

recreating the recorded, anomalous smoking gestures. In future iterations of the detection 

mechanism utilized in this study, smoking in these positions should be included in our 

training session of the ANN. However, before retraining the ANN, these curious gestures 

need to be confirmed as valid smoking sessions and be reproducible in laboratory settings.  

Depending on whether such gestures can be excluded from this study or not, an upper 

bound of 99% accuracy can be estimated for the performance of the automated detection 

mechanism.  

The fourth and final category, “True False Negative,” represented the cases where 

the self-reporting data were correct, and the automated detection mechanism misidentified 

the sessions. Our thorough investigation identified only one such session. We suspect the 

abnormally short puffs by this participant as the culprit for this misclassification.  The 
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likelihood of this type of misclassification can be reduced in the future by allowing 

personalization of the puff duration based on a given person’s smoking profile.  

Table 5.2. Values for the TPR were calculated by iteratively excluding sessions from the 

four categories producing false negatives. 

 

Category Detected 

Smoking 

Sessions 

Excluded 

Smoking 

Sessions 

Corrected 

Smoking 

Sessions  

%TPR 

Ground assumption 100 0 123 81% 

No Smoking 100 2 121 82% 

Improper Use 100 9 112 89% 

Abnormal Gesture 100 9-11 101-112 89-99% 

True False Negative 100 0 101-112 89-99% 

  

In our evaluation of the FPRs, we faced the same challenges as evaluation of the 

TPR. A progressive evaluation of the FPR is shown in Table 5.3.  Under the simplified 

conditions (assumption of 100% accuracy in self-reporting), a total of 22 smoking sessions 

were identified within non-smoking regions of the 120 hours of total recording time. Based 

on the definition of FPR presented in a previous section, 120 hours of recording time 

translates into 777 windows of observed non-smoking behavior. Similar to the case of TPR, 

the following categories of FPR were investigated to understand the nature of the detection 

mechanism's performance better: “Clearly Smoking” and “True False Positive.” The 

results of classification are summarized in Table 5.3. 

 Under the conventional technique of assuming 100% confidence in self-reporting 

data, on average, the detection mechanism achieved an FPR of 2.8% (22 out of 777). 

However, due to clear presence of errors in self-reports, 2.8% serves as an upper bound 

estimate of performance, and the actual performance can be expected to be lower than 

2.8%.  
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To obtain a better estimate of the FPR, the first category of “Clearly Smoking” is 

scrutinized (results are shown in Table 5.3). The “Clearly Smoking” category denotes 

sessions that at least one smoking event was indisputably present, yet no smoking event 

was logged during the self-reported period of smoking. An example of the phenomenon is 

shown in Figure 5.19. A total of 6 such sessions were identified during a careful manual 

inspection of the recorded data. It is unclear whether such instances should be included in 

the evaluation of the TPR or FPR. Here we have chosen the latter and have excluded them 

from the calculation of the FPR. With these excluded the FPR is reduced to 2.1% (16 out 

of 771). 

 The second category, “True False Positive”, signifies the cases where smoking 

detection mechanism performed a true misclassification and, thus, cannot be excluded. A 

total of 16 such sessions fall into this category. The majority of these sessions contained 

very jittery and erratic motions, which may be the cause of their misclassification.  If so, a 

more rigorous filtration of high-frequency signals may remove or reduce this category of 

error in the future iterations of the software.  

Table 5.3. Values for the FPR were calculated by iteratively excluding sessions from the 

two categories producing false positives. 

Category Detected 

False 

Smoking 

Sessions 

Excluded 

Sessions 

Corrected 

False 

Smoking 

Sessions 

Total 

Possible 

Sessions 

%FPR 

Ground assumption 22 0 22 777 2.8% 

Clearly Smoking 22 6 16 771 2.1% 

True False Positive 22 0 16 771 2.1% 
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5.2.5 Discussion 

5.2.5.1 Principal Results 

 The presented automated smoking detection mechanism demonstrated a 

conservative TPR of more than 82% for identifying smoking sessions, while achieving a 

negligible FPR of 2%. Furthermore, the TPR increased to approximately 90% when 

considering only the smoking sessions when participants adhered to study protocols. 

Approximately 10 of the smoking sessions were not reproducible in the laboratory session, 

which will be the subject of future studies to assess how different smoking positions (e.g., 

while lying down) are accompanied by different gesture patterns or otherwise influence 

accelerometer readings.  Once confirmed as valid smoking sessions, similar gesture 

patterns can be included in future training sessions of the detection mechanism’s 

underlying ANN. A new TPR can be estimated for the newly trained ANN by assuming 

50% successful detection of the anomalous gestures (although, based on the current TPR, 

80% is more realistic).  A 50% success rate in detecting  anomalous gestures will increase 

the TPR to a 93% accuracy. In contrast, a liberal assessment of the traditional self-report 

had a maximum accuracy of 71-78%. However, we speculate actual accuracy of self-report 

may be lower if our analysis of the data from our study is indicative of normal self-report 

behavior.  

5.2.5.2 Limitations 

There are two primary limitations of the ADSM approach to detection of smoking: 

technological and methodological. Technological aspects include the battery lifespan, 

which is of primary interest for applications that require continuous monitoring over 

waking hours. The wearable device used in our studies (Zen watch) has a limited practical 
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battery life of nearly 20 hours. However, this battery lifespan may be significantly reduced 

under high-throughput data exchange conditions, where data are continuously transmitted 

to another device via a Bluetooth connection. Although a limitation for practical 

deployment of an automated smoking detection approach, limited battery life can be 

mitigated in two ways. First, the identification of puffs, smoking gestures, and smoking 

sessions can be translocated on the watch and therefore eliminate excessive Bluetooth 

communication. We anticipate a substantial reduction in the power consumption of the 

smartwatch, returning its lifespan to nearly 10 hours a day. The second mitigation of 

limited battery life is newly arriving smartwatches with battery lifespan of more than a 

week. Therefore, the prospect of continuously monitoring smoking behavior for a day or 

more is highly positive. 

A number of methodological issues also limited our current study. The first issue 

is related to study protocol adherence, which requires participants to wear the smartwatches 

in a particular fashion (e.g., wearing the watch on the dominant hand). Although these 

protocols may be acceptable during the early stages of a study, they may be cumbersome 

during the broader dissemination of this approach. To that end, our existing algorithm 

should be improved to detect the orientation of the smartwatch (left hand versus right hand, 

supinated or pronated) either automatically, or during the initial setup stages. Our 

subsequent work has demonstrated the possibility for automatic correction of the 

accelerometer data if the watch is incorrectly worn. In addition, study procedures can warn 

the user if the watch is not correctly worn. The second issue is related to the anomalous 

and irreproducible smoking gestures we observed. These gestures need to be further 
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studied, and once confirmed as valid smoking gestures, examples need to be included in 

future iterations of the smoking detection mechanism.  

5.2.5.3 Conclusions 

The potential benefits of developing an automated system for detection of human 

activities are vast.  Based on our observations, two distinct conclusions can be stated. First, 

it is possible to detect of smoking behavior based on tri-axial accelerometer data, and this 

behavior can be distinguished from other similar gestures. Second, an automated smoking 

detection approach to study of smoking behavior may be substantially more reliable than 

approaches that rely on tradition self-report. Third, with an accurate, automated system in 

place, reliance on self-reporting could be eliminated, thus decreasing the burden on a 

participant without losing any benefits.  The resulting data collection system could allow 

for a range of unobtrusive studies of how context, including that which can be captured by 

GPS systems, influences smoking behavior, targeted surveys around smoking events, and 

targeted communications for those who are trying to quit.  Furthermore, this automated 

system may easily be expanded to detect increasingly popular electronic cigarette smoking, 

for which behavioral gestures accompanying consumption are very similar to cigarette 

smoking but for which the patterns of behavior and their context are much less well 

understood. 

5.3 Clinical Quantification of Smoking Topography Using Smartwatch 

Technology 

5.3.1 Abstract 

While there have been many technological advances in studying the 

neurobiological and clinical basis of tobacco use disorder and nicotine addiction, there have 
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been relatively minor advances in technologies for monitoring, characterizing and 

intervening on smoking behavior. The use of emerging smartwatches can help to better 

study temporal patterns and topographies of smoking in natural settings. In this study we 

compared the results of characterizing smoking topography using a novel mobile software 

with pocket CReSS and video recording. Adult smokers (N=27) engaged in a video-

recorded laboratory smoking task. Participants smoked a cigarette using pocket CReSS to 

assess smoking topography while also wearing a Polar M600 smartwatch. An in-house 

software, ASPIRE, was used to record accelerometer data to identify the duration of puffs 

and inter-puff intervals (IPI). Agreement between staff-observed, CReSS-recorded, and 

ASPIRE-recorded smoking behavior was examined. ASPIRE produced more consistent 

number of puffs and IPI durations relative to CReSS, when comparing both methods to 

visual puff count. After filtering implausible data recorded from CReSS, ASPIRE and 

CReSS produced consistent results for puff duration (R2 = .79) and IPIs (R2 = .73). 

Agreement between ASPIRE and other indicators of smoking topography was high, 

suggesting that the use of ASPIRE is a viable method of passively characterizing smoking 

behavior. Moreover, ASPIRE was more accurate than CReSS for measuring puffs and IPIs.  

5.3.2 Implications 

Results from this study provide the foundation and support for utilizing ASPIRE to 

passively and accurately monitor and quantify smoking behavior in situ. Better 

understanding of real time smoking behavior can be helpful in numerous applications 

including initiation of just-in-time intervention mechanisms. Furthermore, automated 

recording of smoking, or other related human activities, removes the burden and recall 

biases of self-reporting. 
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5.3.3 Introduction 

Tobacco use disorder (TUD) is the leading preventable cause of death worldwide 

(including the US) [164] and the costs associated with its treatment and prevention remain 

a major economic burden on society  [198]. Therefore, a better understanding of the 

behavioral elements and mechanisms that maintain smoking behavior is critically 

important for preventing future smoking-related illnesses. While there have been 

substantial technological advances in studying the neurobiological and clinical basis of 

TUD and nicotine addiction, there have been relatively minor advances in technologies for 

monitoring, characterizing and intervening on smoking behavior. Therefore, there is a 

critical need for leveraging emerging technologies that may help provide personalized 

strategies for smoking cessation.  

Traditional approaches to the study of human behavior primarily rely upon self-

reporting or laboratory observations. Despite strengths found in self-report and laboratory-

based research, those techniques, by design, are prone to having limitations in external 

validity. To more fully characterize and understand factors influencing people’s behavior, 

enabling technologies must be developed to allow non-intrusive and longitudinal 

observation of human behavior in natural settings. Mobile devices are well-positioned to 

passively assess a person's behavior in the aforementioned context.  

Mobile devices contain a rich array of sensors (accelerometer, gyroscope, 

magnetometer, barometer, GPS, heart rate, ECG, oximeter) and may serve as a powerful 

platform for capturing and studying human behavior. In addition, the availability of mobile 

devices is an international phenomenon and their use is not confined to any particular 

socioeconomic class. Therefore, the use of smart and wearable devices for delivery of 
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sensing behavior has the potential to passively observe health behaviors and be deployed 

internationally without confinement to any socioeconomic, political, or geographical 

barriers. 

In recent years, there have been several reports of utilizing commercially available 

smartwatches in studying human activities. These include generic activities such as step 

counter, sleep detection, and rest periods, while others include more specific activities such 

as eating[199], drinking[200], or smoking.[175] Previous work has established the use of 

wrist-worn devices in observing and interpreting smoking behavior in laboratory 

settings[192, 193] and in situ[175, 201]. Some of these devices use proprietary 

sensors[173, 191, 200, 202], while others use off-the-shelf devices such as 

smartwatches[175, 176, 192, 201, 203]. The use of smartwatches in continuous monitoring 

of human activities and behavior is compelling for several reasons including, their 

availability, cost, popularity; and the convenience and completeness of data collection. The 

data connectivity that is afforded by smartwatches adds a critical component to their 

appeal, allowing for real-time observation and interpretation of activities that can lead to 

an immediate deployment of the appropriate intervention. AI-assisted detection of smoking 

with smartwatch technology[175, 176, 189, 192, 193, 201, 203] can reduce the burden of 

its operation by the user, team of research scientists, and the caregivers. Despite their 

potential, the accuracy and resolution of data collected by smartwatches has not been 

systematically explored in comparison to traditional approaches to the study of smoking 

behavior. More specifically, while it has been shown that detection of smoking is possible 

with a smartwatch[175, 192, 201, 203-205], the use of smartwatches in better exploring 

smoking topography of human subjects remains unanswered. 
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Observation and automated detection of smoking using smartwatches also has several 

compelling aspects. First, smartwatches consist of sufficient storage capacity to record and 

store sensor data for a duration longer than 24 hours. The recording duration can be 

extended into months by the addition of micro SD storage media. Second, the collected 

data will require no additional action by the user or the participant of a study, qualifying 

this method of data acquisition to be highly unobtrusive. Third, unlike self-reporting 

approaches, continuous recording of sensor data can provide a comprehensive report of a 

person’s activities in natural settings. For instance, proper interpretation of the sensor data 

can provide a detailed view of related human activities such as drinking, eating, sleeping, 

exercising and smoking all in one experiment. The collection of such detailed ensemble of 

activities will be nearly infeasible through the use of self-reporting when observed in situ. 

Fourth, the real-time connectivity of smartwatches allows for real-time observation of 

human behavior, which can be used in numerous ways to study or augment human 

behavior. For example, the adherence of a subject to study protocols can be viewed and 

confirmed, and if necessary, notifications and reminders can be sent to the participants. 

Real-time and continuous connectivity with participants allows for the initiation of the 

appropriate actions, paving the way for personalized intervention or cessation approaches. 

Finally, the automated detection of activities (such as smoking) can initiate timely 

questionnaires, actions, or notify the appropriate members of the participant's social 

network. 

In this report, we present an evaluation and comparison of the quality of smoking data 

collected by smartwatches, CReSS, and video recordings of human subjects in a laboratory 

setting. In particular, we compare and contrast the accuracy of observing smoking 



www.manaraa.com

 159 

topography using the Automated Smoking PerceptIon and REcording (ASPIRE) 

smartwatch application and the Clinical Research Support System (CReSS) device. We 

resort to human annotation of visual recordings of smoking sessions when possible to 

resolve substantial disagreements between the ASPIRE and CReSS approaches. We also 

explore the additional capabilities of the ASPIRE-based method and comment on the 

significant advantages that it affords and its novel future utilities.  

5.3.4 Methods 

5.3.4.1 CReSS Device 

Clinical Research Support System for Laboratories (CReSS Pocket; Borgwaldt KC, 

Inc, Richmond, VA; https://www.borgwaldt.com/en/products/smoking-vaping-

machines/smoking-topography-devices.html)) is widely used for studying smoking in a 

laboratory setting [206-209]. Though the CReSS devices provide objective measures of 

smoking topography and is amenable to use a laboratory setting, it is relatively expensive 

(~$5,500), and interferes with the natural smoking experience. Those issues limit its utility 

for characterizing ad lib smoking in a smoker’s natural environment.  

5.3.4.2 Characterization of Smoking Topography using Smartwatch  

A smartwatch-based method allows participants to smoke freely in their natural 

settings without the need to use an intermediary device. Our previous work reported the 

development of an Android Wear OS-based software (ASPIRE) package that is capable of 

recording[192], and automated detection of smoking gestures (puff)[201]. ASPIRE 

incorporates a hierarchy of AI techniques in order to achieve automated detection of 

smoking sessions with as high as 97% success in laboratory settings[192, 203], and 90% 

success in natural settings[201].  
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In the current study, participants were provided a smartwatch (Polar M600) and 

Android smartphone for the duration of data collection. The ASPIRE app was downloaded 

to both the watch and the phone. The smartwatch app listens and collects the data from the 

participant and then sends it via Bluetooth connection to the smartphone app. The 

smartphone then uploads the data to a secure server for storage. The current version of 

ASPIRE can be obtained from the corresponding author and installed in either a 

phone/watch pair or a stand-alone app on the watch.  

5.3.4.3 Data Collection Protocol 

Participants were first outfitted with a Polar M600 to wear on their left hand. 

Participants were asked to follow a prompt screen on a computer in the laboratory that 

gave them precise instructions on what behaviors to perform as well as how long to 

execute each behavior. An overall view of the experimental paradigm with associated 

durations is shown in the supplementary section, Figure 5.20. For this study, participants 

were asked to smoke a total of six minutes, in which they were asked to split evenly 

between their left and right hands. In addition to smoking, they were also asked to record 

over seven minutes of other movements including 52 seconds of “packing” their cigarette 

package. These additional gestures will be excluded for the purposes of this study but will 

be critical in future work to further validate the specificity of ASPIRE.  
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Figure 5.20. Outline of the protocol used for collection of in laboratory data. 

The CReSS device was used to record the following measures: puff volume, average 

flow, peak flow, time of peak flow, duration, and inter-puff interval (IPI). The two 

measures of interest for this study are puff duration and IPI. The puff duration is the length 

of time in milliseconds that a person inhales for a given intake. The IPI is the number of 

milliseconds between the end of one puff and the beginning of the next. CReSS records 

both a high-level and a detailed view of these measures. A median measure is used for the 

high-level view due to the small sample size and existence of outliers that are inherent to 

the device. The detailed view contains information about each one of the measures per 

puff. In addition to the data collected by the CReSS and smartwatch devices, videos of 

each session were also recorded, coded by two independent raters (inter-rater reliability 

=1.0).  

5.3.4.4 Participants 

Participants were recruited via community advertisements, attended an in-person 

screening visit to determine eligibility and then an experimental smoking visit. Participants 

gave written informed consent approved the Medical University of South Carolina IRB, 

and received financial compensation for study participation. Inclusion criteria were: being 

age 18 years or higher, having an expired carbon monoxide (CO) concentration of ≥ 6 ppm 
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(to confirm smoking status) and being willing and able to comply with protocol 

requirements. The participants (N = 35; female = 13) were on average 43.91 (+/- 12.76) 

years old with a CO level of 26.57 (+/- 12.32) ppm. Due to technical or recording errors, 8 

participants had incomplete CReSS (n=5) or ASPIRE (n=3) data, resulting in a final 

analytic sample of N=27. 

5.3.4.5 Data annotation procedure 

The first step in the evaluation procedure was to annotate the data collected from 

smartwatch, CReSS, and video recordings. Due to the time and effort required for the video 

recordings, only the puff count from each hand was visually annotated. The annotation for 

the smartwatch and CReSS device consisted of marking the timestamp associated with the 

beginning and end of each puff. Using this information, puff duration and Inter Puff 

Interval (IPI) can be measured. In order to isolate the portion of the data that contained 

smoking, the timestamp of each data point was referenced to the design protocol. Then a 

well-trained researcher recorded the total number of puffs in the region as well as the start 

and end of each puff. Each puff is easily identifiable as first starting with a slight or 

negligible change in the x dimension (±1), a moderate decrease in the y dimension (-4) and 

a sharp decrease in the z dimension (-8) from a resting position. This is then followed by a 

period of uninterrupted and equilibrated values of x, y, and z at around 9 m/s2, -5 m/s2 and 

-3 m/s2 respectively. The end of a smoking gesture was then marked as the return of the x, 

y and z values to a “resting” state. These numbers vary per participant but will follow the 

same general shape.    
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5.3.4.6 Evaluation and Exclusion of Data 

The first step in the evaluation of this work was to annotate the data collected from 

the participants’ puffs (protocol described in section E). The puff duration and IPIs were 

calculated using these annotations. In the case of ASPIRE, the known sampling rate of 

30Hz was used to convert the timestep units into millisecond units. Figure 5.21 shows an 

example of a full set of data (shown in upper right box) recorded by ASPIRE, and a 

subsection of that data that contained smoking (annotated puffs are denoted with asterisks). 

The period of smoking shown in Figure 5.21 accounts for approximately three minutes of 

data.  

 

Figure 5.21. A sample of ASPIRE's recording session illustrated in the upper right corner. 

The main and larger figure depicts the portion of the image that corresponds to a smoking 

session (asterisk indicate the start of a puff). 

 

The second phase of the evaluation consisted of calculating the Pearson correlation 

coefficients between the extracted puff durations and IPIs reported by CReSS and ASPIRE. 

Correlations were first examined using the reported median data for all subjects and then 

followed by analysis of the data for each individual subject.  

  

* * * * *
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Due to the switching of the smoking hand without the transfer of the smartwatch, half 

of the smoking session was not recorded by the smartwatch. Therefore, using the video 

recordings of the smoking sessions, we limited our comparison exercise to the portion of 

the smoking sessions that were recorded by both CReSS and ASPIRE. In addition, in some 

instances CReSS reported implausible measures, inclusion of which would provide an 

inaccurate comparison of the three methods. For instance, CReSS reported puffs with a 

duration of 5ms or IPIs of over one minute at the beginning of each smoking session. The 

long IPI at the beginning of the smoking session is the time the device was turned on to the 

time of the first puff and were therefore removed from our analysis. The implausibly short 

puffs reported by CReSS can be explained by a participant performing rapid and multiple 

puffs such that neither ASPIRE nor the video recordings could identify. In such instances 

we report results with and without the included implausible data since they serve as clear 

demonstration of some nuances of the CReSS device.  

5.3.5 Results 

5.3.5.1 Overview of the Collected Data 

Each accelerometer data file collected by ASPIRE contained 20 minutes of data, 

which is consistent with the experimental protocol. As a first step in our comparison of the 

two methods, histograms were created for individual puff durations and IPIs combined 

across all subjects (shown in Figure 5.22 and Figure 5.23). The blue bars in these figures 

correspond to the values produced by the CReSS device and orange bars correspond to the 

values produced by ASPIRE. Although the distributions of the puff durations were very 

similar between the two methods, the distributions of IPI values were different (shown in 

Figure 5.23). While the two histograms demonstrate a general agreement, they differ 
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notably in reporting the number of small IPIs. For the CReSS data, there is a spike in very 

low values corresponding to the IPI value of 0-1 second. The median of the IPIs reported 

by CReSS in this range was 0.33s.  

 

Figure 5.22. Comparison of individual puff durations collected via CReSS (blue) and the 

App (orange). 

 

 

Figure 5.23. Comparison of individual IPIs collected via CReSS (blue) and the App 

(orange). 
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5.3.5.2 Comparison of Overall Statistics 

The number of puffs that the CReSS device recorded was compared to a visual 

inspection of each participant's respective video recordings. In 80% of cases, the visual 

puff count and the count reported by CReSS were within ±2. However, there were four 

cases where the puff counts differed by as much as ±6.  Figures 5.24a and 5.24b show the 

correlations between the overall visual puff counts for the left hand of each participant 

compared to the puff counts reported by ASPIRE and CReSS (respectively). The R2 value 

for the visual puff count and the counts reported by ASPIRE was 0.79 whereas the R2 

between the visual puff count and the CReSS reported count was 0.52. The participant that 

caused the most deviation in both comparisons was P14 (in red in Figures 5.24a and 5.24b) 

with visual, ASPIRE and CReSS reported counts of 14, 8, and 38 respectively.  

  

a. b. 

Figure 5.24. Comparison of the visual puff count versus the a.) ASPIRE puff count and 

b.) CReSS puff count. In both figures’ participant P14 was an outlier and is colored red.  

 

The R2 between the median puff duration, and median IPI across all patients is 

illustrated in Figure 5.25a and Figure 5.25b. R2 values of 0.7926 and 0.7309 (p < 0.001) 

were calculated for the median puff durations and median IPIs respectively, indicating a 

high level of correlation between the data reported by the two methods.  
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a. b. 

Figure 5.25. Comparison of the overall a.) CReSS reported median puff duration v. 

ASPIRE reported and b.) CReSS reported median IPI and ASPIRE reported.  

 

5.3.5.3 Comparison of Individual Puffs 

Due to the enigmatic nature of smoking topography data acquired by CReSS, the 

data is not usually used to perform detailed statistical analyses or inferences and instead 

the median values for puff duration and IPI are used. However, availability of the more 

reliable data from ASPIRE allows for the meaningful study of mean, standard deviation 

and other statistical moments of puff duration and IPI for each participant. Figure 5.26 

illustrates the smoking topography for a representative participant (P2) reported by CReSS 

and ASPIRE. Both methods reported a total of ten recorded puffs separated by nine IPI 

intervals. Also, both methods report similar values for the median puff duration and IPI. 

However, it is clear that the duration of the entire event is highly discrepant across the two 

methods. Furthermore, visual inspection of the smoking session reported by CReSS 

consists of only eight decipherable puffs (green regions). This is due to very short IPIs of 

5 milliseconds that render two puffs invisible in the figure. On the other hand, the same 

smoking session reported by ASPIRE is well organized into the expected shorter puffs that 

are separated by longer IPIs. The trend marked as cCReSS in this figure, corresponds to 

p < 0.001 



www.manaraa.com

 168 

the corrected CReSS data by only correcting five elements (puffs or IPIs out of 20) of the 

smoking session. The correlation between the CReSS and ASPIRE reported data improved 

from 0.05 to 0.8 after correcting for the discrepant data. Figures 5.27 and 5.28 demonstrate 

other examples of similarity between the CReSS and ASPIRE data after correcting for 

outliers. These examples have R2 values in the ranges of 0.77-0.83 for puff duration and 

0.97-0.99 for IPI. These correlation values indicate a similarity reported by the two 

different methods with statistical significance of p < 0.005.  

 

Figure 5.26. An illustration of smoking topography reported by CReSS, ASPIRE, and 

corrected CReSS. The puff durations and IPIs are illustrated in green and blue 

respectively. 

 

  
a. b. 
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c. d. 

Figure 5.27. Correlations of individual puff durations collected via the CReSS device and 

ASPIRE for participants a.) P15, b.) P17, c.) P19 and d.) P8. 

 

  
a. b. 

  

c. d. 

Figure 5.28. Correlations of individual IPIs collected via the CReSS device and ASPIRE 

for participant a.) P15, b.) P19, c.) P7 and d.) P17. 
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5.3.5.4 Preliminary Results for Puff Volume 

One critical advantage of the CReSS device is its capability in collecting volumetric 

data related to smoking by measuring the volume of air that is inhaled with each puff of a 

cigarette.  In this exercised we explored the possibility of inferring the volumetric 

information from puff durations. Figure 5.29 shows preliminary comparison of the median 

puff durations recorded by ASPIRE versus the median puff volumes reported by CReSS. 

These two measurements exhibit a R2 value of 0.5216, which indicates a clear evidence of 

a relationship between these values with a statistical significance of p < 0.001. The 

correlation between puff duration and volume may be further improved by considering 

other factors, such as the participant’s height and weight.    

 

Figure 5.29. Correlation of median puff volume and median puff duration. 

5.4.6 Discussion  

Findings from this proof of concept study provide direct evidence to support using 

ASPIRE to passively collect multiple components of smoking behavior, findings which 
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pave the foundation for basic smoking research and translation for clinical interventions to 

naturalistic settings.  The study revealed three important findings. First, ASPIRE is highly 

effective in accurately detecting when a person initiates smoking and how many puffs of a 

cigarette is inhaled. Secondly, ASPIRE may be used to accurately characterize the duration 

of each puff—which may provide a dose indicator when used in conjunction with puff 

count.  Finally, ASPIRE can detect time between each puff (inter-puff interval), which may 

provide a meaningful metric of episodic smoking compulsivity.   

Smartwatches have the potential to significantly advance the study of human behavior 

in situ, however the reliability of the information reported by wearable devices has been 

questioned. In this study we have investigated and demonstrated the reliability of the data 

reported by ASPIRE in the laboratory settings compared to the CReSS and visual recording 

of the smoking sessions. Moreover, though other technologies have been recently 

developed to detect smoking behavior at the puff or session level[175, 176, 201], this is the 

first study to demonstrate characterization of smoking topography (namely duration and 

IPI) as performed by ASPIRE.  

The ability to passively collect and accurately characterize multiple components of 

smoking behavior in the natural environment is a critical step in monitoring smoking, 

characterizing smoking outcomes in outpatient clinical trials, and developing real-time 

adaptive interventions/personalizing smoking cessation interventions. Much of our 

knowledge about the mechanisms that elicit smoking behavior is obtained from observation 

of behavior in laboratory settings. For example, research has examined how exposure to 

smoking stimuli (for example, image of cigarette lighter)  [210], acute stressors or mood 

inductions [e.g., 211, 212], fasting [213], and interventions [214, 215] affect smoking 
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behavior under controlled laboratory conditions. ASPIRE can be used to examine whether 

laboratory-based findings generalize to real-world settings. In future studies, ASPIRE-

detected smoking can be compared to randomly prompted app, text, or smartwatch surveys 

asking about stress. Alternatively, several passive technologies can be combined. For 

example, measures of electrodermal activity or heart rate (i.e., physiological arousal) 

recorded via mobile devices can be collected in addition to assessing the timing, count, and 

characteristics of cigarettes smoked in real-world settings.  

In addition, real-time technology has the potential to greatly improve assessment of 

smoking outcomes in smoking cessation clinical trials [216]. The traditional outcome 

measure in smoking cessation clinical trials is biomarker-confirmed abstinence [217, 218]. 

Typically, this is assessed via participant report of abstinence for a certain number of days 

(i.e., 7-day abstinence) and confirmed in laboratory via carbon monoxide or cotinine. These 

outcomes are subject to errors in retrospective recall and intentional misreporting. ASPIRE 

can provide objective evidence of smoking while also indicating when the smartwatch is 

removed for the purposes of determining adherence with wearing the smartwatch. Remote 

technologies also help to extend the reach of clinical trials. Individuals with the necessary 

technology can participate in a smoking cessation trial remotely (i.e., at a different location 

than the research team) while still providing rigorous evidence of smoking and/or 

abstinence. 

Finally, the incorporation of AI and Machine Learning techniques to automatically 

detect and report smoking behavior can assist in the delivery of personalized and Just-in-

Time interventions. AI algorithms can incorporate the precise information regarding the 

context and timing of cigarettes smoked gained from ASPIRE to determine when an 
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individual is most likely to smoke. Interventions can be delivered pre-emptively to prevent 

smoking or relapse [e.g., 219]. 

A number of limitations must be considered when interpreting the current findings. 

First, validation of ASPIRE requires comparison to a gold standard measure. However, 

CReSS, as the gold standard comparator used in this study, suffers its own limitations. The 

CReSS device identifies smoke topography only based on the inhalation patterns and does 

not incorporate any information regarding the exhalation activity. Therefore, the CReSS 

device may identify a single puff that is composed of numerous discontinuous puffs as 

multiple short puffs separated by short IPIs. For instance, in Figure 5.23 it was shown that 

CReSS recorded a significant number of IPIs of 1 second of less. While IPIs of this length 

are theoretically possible, their appearance in such an abundance reported by CReSS is 

highly suspect. The short IPIs reported by CReSS contribute to skewing the overall 

statistics presented which lowered concordance between the CReSS puffs and the ASPIRE 

collected puffs. Based on the review of the visual recordings in this study, we have 

confirmed that the ASPIRE approach provides a more consistent and reproducible report 

of the smoking topography than the CReSS device. Furthermore, we have also 

demonstrated the consistency of smoking topography reported by smartwatches and the 

CReSS device in laboratory settings. Our results conclude the puff duration and IPI 

reported by both devices exhibit a substantial degree of correlation after the exclusion of 

the outliers reported by the CReSS device.  

A second limitation of this study is that the laboratory is an unnatural smoking 

environment that may elicit unnatural smoking behavior from the participants. ASPIRE 

can record and report smoking behavior in natural settings, though it is possible that the 
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accuracy of ASPIRE in the laboratory does not generalize to these settings. Thus, future 

efforts should focus on demonstrating the applicability of ASPIRE in studying smoking 

behavior in natural settings.  

In summary, this study provides preliminary evidence of ASPIRE’s potential to 

accurately and reliably detect smoking characteristics passively and in real-time. The 

ability to observe smoking behavior in situ holds great promise in advancing research on 

the mechanisms that maintain cigarette smoking, measuring behavior change in the context 

of clinical trials, and the development of novel, real-time interventions for smoking 

cessation and just-in-time relapse prevention interventions.  

5.4 Resolving Ambiguities In Accelerometer Data Due To Location Of Sensor On 

Wrist In Application to Detection of Smoking Gesture 

5.4.1 Abstract 

Diseases resulting from prolonged smoking are the most common preventable 

causes of death in the world today. Automated identification of smoking gestures can help 

to initiate the appropriate intervention method and prevent relapses in smoking. In previous 

work, we investigated the success of utilizing accelerometer sensors in smart watches to 

identify smoking gestures. Our experiments have indicated that identification of smoking 

gestures is indeed possible with 85%-95% accuracy through the use of Artificial Neural 

Networks (ANNs). As a follow-up study we present an investigation into the ambiguities 

in accelerometer data that arise due to the position of the smart watch on a person’s wrist. 

As such, we have developed a method for transforming data to resolve the ambiguities for 

eight common configurations on the wrist. In this study we have utilized sensor data from 

the Pebble Time Steel smart watch. Results of our investigation indicate 100% success in 
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recovery of individual smoking gestures after our developed transformation. Additionally, 

our results indicate an average increase of 29.6% in detection accuracy when the method 

is applied to continuous smoking sessions. The methodology created in this work will be 

integrated into a mobile application for the automated detection of smoking to make it more 

flexible and robust. Inclusion of this method will greatly increase the accuracy of the ANN 

when it is faced with varying configurations of the watch. 

5.4.2 Introduction 

In the past decade, the subfield of activity recognition has emerged within the field of 

health informatics. Traditionally this research was conducted with the use of custom 

engineered devices that were worn across various parts of a subject’s body[202, 220], but 

recently much of these investigations have shifted to utilizing both smart phones[221] and 

smart watches[188, 222]. Concurrent to this growth in the field of activity recognition was 

an international effort to warn the population about the dangers of smoking. Although the 

smoking rate has decreased significantly since then, smoking related diseases are still the 

most common preventable causes of death in the world today. In addition, tobacco use by 

both college and high school students has steadily increase as the popularity of product such 

as e-cigarettes and hookah has risen[177, 178]. On average, smokers relapse four times 

before successfully quitting[179]. It has been shown that constant support from an 

individual’s community is shown to increase the likelihood of quitting[179]. The existence 

of an application (housed on a smart phone or watch) that would provide this constant 

support could greatly increase a person’s resoluteness in abstaining from smoking.  

The first step in making such an application is the ability to detect when a person is 

smoking so that the appropriate intervention can be initiated. Identification of a smoking 
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gesture provides a clearly defined challenge in the field of activity recognition with possibly 

highly impactful results. Previous works have shown that it is possible to detect smoking 

gestures using in-house designed wearable devices[173, 174, 191] such as multiple 9-axis 

inertial measurement units (IMU’s), respiration bands and two-lead electrocardiographs 

worn under the clothes. Whereas these techniques have shown great promise with both high 

accuracy (95.7-96.9%) and low false positive rates (<1.5%), use of uncommon and 

relatively expensive devices severely limits mass deployment for daily use. However, in our 

previous work[192] we have shown that sufficient accuracy (85-95%) and false positive 

rates (<20%) can be achieved with accelerometer data collected from a common smart 

watch and a trained Artificial Neural Networks (ANNs).  

In the next phase of investigation, a larger study involving several dozen participants was 

conducted. The particular protocol for this study required participants to collect a specified 

number of smoking and non-smoking activities while wearing the watch in a pronated 

configuration on their right wrist. However, some smoking activities, such as smoking and 

driving, necessitated the participant to use their left hand. In addition, due to user error, there 

were several participants that wore the watch upside down resulting in deviations from a 

typical smoking gesture. In these cases, the ANN was unable to detect smoking thus 

motivating a need for a method to resolve these ambiguities. In this investigation eight 

common configurations of a smart watch on an individual’s wrist and the resulting data 

transformations were investigated.  Prior knowledge of these transformations will allow for 

a more complete deployment of our detection mechanism on smart watches in the future. 
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5.4.3 Background and Method 

5.4.3.1 Data Collection 

In this study eight possible configurations of the smart watch on a participant’s wrist 

were explored. A short description and shorthand name designation is given in Table 5.4. 

Data was collected on the Pebble Time Steal smart watch at a sampling rate of 50Hz using 

the AccelTool application (http://mgabor.hu/accel/). For each of the eight configurations, 

five instances of a single smoking gesture were collected. This yielded, in total, 40 gestures. 

A sample from each configuration is shown in Figure. 5.30. 

Table 5.4. A short description and shorthand designation are given for each position on 

the wrist. "Right side up" denotes that the watch is positioned such that text on the screen 

is not upside down. (L/R) denotes either the left (L) or right (R) wrist. 

 

Designation Description 

(L/R)P1 Right side up in pronated position 

(L/R)P2 Upside down in pronated position 

(L/R)P3 Right side up in supinated position 

(L/R)P4 Upside down in supinated position 

 

Figure 5.30. XYZ plots for configuration: (a) LP1, (b) LP2, (c) LP3, (d) LP4, (e) RP1, (f) 

RP2, (g) RP3, and (h) RP4. 
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In addition to single smoking gestures, a continuous smoking session for each 

configuration was collected. In this case, a continuous session is defined as an alternating 

sequence of an individual smoking gesture and a two second resting period. Each continuous 

session included five individual gestures. 

5.4.3.2 Transformation of Data 

For this study, the configuration of LP1 was taken as the anchor position since data from 

this configuration was used to train the neural network from the original work[12]. Although 

conceivably different ANNs can be trained for each configuration, this is not an ideal 

approach given the limited resources in mobile devices (especially so for smart watches) 

and acquisition of additional data for training of each network. The more optimal approach 

is to provide a transformation layer that will map each set of data to the common frame of 

the LP1. Given the nature of different configurations of the watch, such a transformation 

could be theorized based on two components. The first component of this transformation 

should correct for the altered orientation of the watch in other configurations. Rotational 

operators can implement this first transformation. Here we utilized Eulerian rotations of the 

Cartesian sensor data to relate all configurations to the anchor frame. Equation (5.4.1) shows 

the Euler transformation that permits full rotation of the space using three consecutive 

rotations about z, y, z axes. Rotation about each of the axes is denoted by α, β, γ where γ 

signifies the first rotation (note that rotational transformations are not commutative). Table 

5.5 describes the values of α, β, γ that correspond to the reorientation component of each 

configuration with respect to the anchor configuration under the ideal anatomical 

relationship (perfect symmetry of posture and etc.).  
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The second component of a complete transformation should account for the alternate 

path that is traversed from rest-to-mouth during a smoking gesture (or a puff). This 

transformation is only required when the watch is placed on the opposite arm to the 

reference point (LP1 in this work). This transformation in chirality of the sensor space can 

be obtained by comparing the similar gestures from LP1 (our reference configuration) and 

RP4 since the orientation of the watch is the same in both configurations. Therefore, any 

alternation in the sensor data must be due to the change in chirality of the traversed path of 

the smartwatch. The resultant chirality inversion transformation is shown in Equation 

(5.4.2) and the complete transformation of the sensor data is shown in Equation (5.4.3). 

Figure 5.31 shows the individual gesture samples in Figure 5.30 after proper transformation 

using the information shown in Table 5.5 and Equation (5.4.3). 

(

𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾) − 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾) −𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛾) − 𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝛾) 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)

𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾) + 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾) −𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛾) + 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)

−𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛾) 𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛽)
) (5.4.1)  

𝐶𝑖 = (
1 0 0
0 1 0
0 0 −1

)       (5.4.2) 

𝑆′ = 𝐶𝑖. 𝑅(𝛼, 𝛽, 𝛾)       (5.4.3) 

Table 5.5. The values for α, β and γ are given for each of the configurations. 

Position αz’’ βy’ γz 

LP1 0º 0º 0º 

LP2 0º 0º 180º 

LP3 0º 180º 180º 

LP4 0º 180º 0º 
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RP1 0º 180º 0º 

RP2 0º 180º 180º 

RP3 0º 0º 180º 

RP4 0º 0º 0º 

 

Figure 5.31. XYZ plots for rotated positions: (a) LP1, (b) LP2, (c) LP3, (d) LP4, (e) RP1, 

(f) RP2, (g) RP3, and (h) RP4. 

 

Visual inspection can confirm that the resulting samples closely resemble the anchor 

configuration. 

5.4.3.3 Evaluation on Previously Trained ANN 

 The neural network toolbox in Matlab (version R2016a) was utilized during this 

phase of the study. In previous work, a series of ANNs were trained using individual 

smoking gestures and a variety of non-smoking gestures with the user wearing the watch in 

LP1. In this study each individual dimension of the accelerometer data was isolated and 

explored. Neural networks were created for the X, Y, and Z dimension both separately (X-

ANN, Y-ANN, Z-ANN) and combined (XYZ-ANN). This work concluded that the X 
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dimension provided the most information for detection of an individual smoking gesture. 

However, when the X-ANN was presented with more complex non-smoking gestures such 

as eating and drinking, it produced a high number of false positives. In the same study, the 

XYZ-ANN maintained a high accuracy alongside the X-ANN while also maintained a low 

false positive rate. Therefore, it was concluded that inclusion of the Y and Z dimension was 

necessary to achieve consistent high accuracy (>75%) and an acceptable false positive rate 

(<20%). For this reason, the current study focused on the XYZ-ANN. 

5.4.3.4 Evaluation of The Proposed Transformations 

5.4.3.4.1 Individual Gesture Detection Evaluation—The original data as well as the 

transformed data were classified using the XYZ-ANN. If an output of 0.75 or greater was 

observed from the network then the signal was classified as a smoking gesture. Results of 

this exercise are summarized in Section 5.4.4.1.  

5.4.3.4.1 Continuous Session Detection Evaluation—The first step in evaluating a 

continuous session was to identify the positions in the session where the smoking gestures 

occurred. There was no automated method of accomplishing this task and it was therefore 

completed manually. Since the annotation of the start and end of a smoking gesture is 

highly subjective, evaluation of a continuous smoking session is difficult to quantify. In 

this study the start and end of a smoking gesture is defined as the area in which the X 

dimension exhibits a dip (this dip can be seen clearly in Fig. 5.4.1(a)). Any output within 

these dip regions greater than 0.75 was considered a true positive (anything <0.75 was 

classified as a false negative). Any regions outside of these ranges were considered non-

smoking gestures. Outputs in these regions less than 0.75 was considered a true negative 

(anything >0.75 was classified a false positive). The accuracy was then calculated using 
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Eq. (5.4.4) where TP denotes the number of true positives, TN the number of true negatives, 

FP the number of false positives and FN the number of false negatives.    

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                           (5.4.4)  

As with the individual gestures, the original and transformed data were classified using 

the XYZ-ANN. The results are summarized in Section 5.4.4.2. 

5.4.4 Results and Discussion 

The results of simulating the XYZ-ANN on the test data are reported in the following 

sections. In each section a short discussion of the results is also included. 

5.4.4.1 Detection of Individual Smoking Gesture 

For each of the eight configurations, the number of correctly detected smoking gestures 

was recorded before and after transformation of the data. Fig. 5.32 shows the resulting 

counts of true positives. 

 

Figure 5.32. The number of correctly identified smoking gestures before transformation 

is denoted by the blue bars. The signals after transformation are represented by the red 

bars. 
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As seen in Figure 5.32, for each of the eight configurations, transformation of the data 

resulted in all five of the gestures being identified as smoking gestures. It is worth noting 

that in the cases of LP3, RP2, and RP4 some or all of the five gestures were correctly 

identified as smoking before the transformation. One possible explanation is the fact that in 

these three conformations the X dimension remains fixed (see Table 5.5). This is consistent 

with the previous observation that the X dimension is the most informational in application 

to detection of smoking and since it is not changed in these configurations, smoking gestures 

are still detected before the transformation. 

5.4.4.2 Detection of Smoking in Continuous Sessions 

Table 5.6 shows the accuracies in detection of each individual smoking gesture within 

each continuous session before and after transformation. In addition, a percentage change 

is shown highlighting the change in performance before and after transformation. 

In all cases the percentage change is positive, signifying the effectiveness of the 

developed transformations. In addition, the accuracies are comparable to the accuracies 

achieved in previous work with the XYZ-ANN using only LP1 data. An example of the 

improvement in detection is shown in Figure 5.33. Recall that a smoking gesture was 

defined as the area between the start and end of a dip in the X dimension (in blue). A clear 

refinement can be observed between pane (a) and pane (b) in the areas where the XYZ-
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ANN detects smoking (denoted by a bump in the black line). In pane (b) more of each 

smoking gesture is encapsulated by the spikes in black.  

Table 5.6. Accuracies in detection of individual smoking gestures inside of continuous 

sessions before and after transformation are reported. 

 

Configuration Before After % Change 

LP1 73.23 – – 

LP2 26.98 78.45 +51.47 

LP3 66.89 78.69 +11.80 

LP4 34.03 76.27 +42.24 

RP1 31.95 67.04 +35.09 

RP2 70.43 71.78 +1.35 

RP3 23.54 76.20 +52.66 

RP4 63.95 76.33 +12.38 

 

Figure 5.33. Continuous session with watch in RP1 configuration (a) before and (b) after 

transformation is depicted. Output of the XYZ-ANN is shown in black. 

                   X                          Y                           Z                         Output 
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5.4.5 Conclusion 

Based on the results from Figure 5.33 and Table 5.6 it can be concluded that our proposed 

methodology is a suitable approach for resolving the ambiguities that arise from varying 

the configuration of a watch worn on the wrist. In addition, this study has produced further 

evidence that the X dimension of the accelerometer data is the most informational in 

detection of smoking. Evidence for this conclusion comes from the results of LP3, RP2, 

and RP4. In each of these configurations the X dimension is not rotated in the original data. 

These configurations show the highest degree of success in individual detection before 

transformation and show only modest gains after transformation in detection of continuous 

sessions. This confirms that inclusion of the Y and Z dimensions do in fact increase the 

accuracy, but are not as important as X.  

Most left-handed individuals wear watches on the right wrist instead of the left thus, 

arguably, the most common configuration switch will be that of LP1 to RP1. Not only did 

the transformation of RP1 produce 100% accuracy in individual gesture detection it caused 

a 35.09% increase in accuracy in detection of continuous gestures. In a future smoking 

detection app, the watch configuration preference can be entered by the user. The app can 

then leverage this setting to do the correct transformations to ensure detection accuracy. It 

is possible to automate this process in the future by including a preliminary calibration step 

in which the watch will automatically detect the configuration of the watch. 
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Chapter 6: Summarization of Major Results for the Automated Detection of 

Smoking 

6.1 Puff Level Binary Detection of Smoking 

 The first objective of this part of my research was to create a model that performs 

a binary detection of a smoking puff. A full description of the work completed can be found 

in section 5.1. The following is a summary of the major achievements. Binary classification 

(“smoking” vs. “non-smoking”) was completed using a traditional ANN. The network 

architecture was a 300 neuron input layer, followed by a 10 neuron hidden layer with a 1 

neuron output. The network was initially trained with smoking data collected in a 

laboratory setting. Later, data from real smokers was also added to the training set and the 

model was retrained and tested. For both iterations of the model, an accuracy of nearly 

90% was achieved. In an effort to reduce the total number of neurons in the input layer 

several factors were considered and explored. The first of which was whether all axes of 

the accelerometer needed to be used to maintain accuracy. In our initial studies we found 

that the x-axis was the most informative when considering single gestures, however, when 

the network was deployed to extract single gestures out of continuous smoking session, we 

found that using data from all three axes yielded better results. The second factor that was 

investigated was the sampling rate. Our initial studies used a sampling rate of 100Hz 

however we found that this rate can be dropped to as low as 25Hz while still maintaining 

over 87% accuracy. 
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This work marked the first study to be completed in the arena of automated smoking 

detection using smartwatch technology. After the completion of this work, a patent was 

applied for and awarded (Patent number: US 10551935).  

As promising as these results were, there were still one clear bias in detection of 

the smoking puffs when the model was applied to larger, more complex datasets. We found 

that the binary classifier detected the first edge of smoking very accurately, however 

accuracy dropped off towards the end of each puff. However, this bias was addressed in 

future works reported in this work.  

6.2 Session Level Detection of Smoking 

 The second objective of this part of my research was to extend the binary detection 

of smoking and apply it to the detection of smoking sessions (or full a cigarette). A full 

description of the work completed can be found in section 5.2. The following is a summary 

of the major achievements. As stated previously the first challenge of this objective was 

that a smoking session was not analytically defined at the time the work started. Therefore, 

utilizing both subject matter experts and empirical data collected from real smokers, a 

model of a smoking session was developed. Session level detection was accomplished by 

utilizing the results from the puff level detection in combination with a rule-based AI. The 

study performed to validate the model included the recruitment of ten heavy smokers to 

wear a smartwatch that housed our in-house sensor recording app for several days to record 

data. The participants also utilized a Google Form as a mechanism of marking the start and 

end times of each smoking session throughout the day. The true positive rate reported from 

this model was over 89% once misclassified sessions resulting from self-reporting errors 

were excluded. The false positive rate was 2.1%. Again, the results from this work mark a 
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first in several aspects. The analytical model created to describe a smoking event (or 

cigarette) is the first of its kind and is currently being employed by several smoking 

cessation researchers throughout the state.  

6.3 Automated Characterization of Smoking Topography 

The third objective of this part of my research was to redevelop the binary model 

presented in section 5.1 to not just detect, but to also characterize several topographies of 

smoking. A full description of the work completed can be found in section 5.3. The 

following is a summary of the major achievements. The first step in redevelopment was to 

reannotate the training set from the previous studies. In those studies, smoking gestures 

were separated into full puffs. However, in order to overcome the bias of the binary 

classifier and characterize interesting features of smoking such as duration and time 

between puffs, the data needed to be dissected further. The data was reformulated into 

“mini” gestures (“hand-to-lip”, “hand-on-lip”, “hand-off-lip” and “non-smoking”). After 

successful reannotation of the data, a conventional neural network was employed that had 

an output size of four (one for each “mini” gesture). The output of this network was then 

fed to a rule-based AI that modelled the smoking behavior as a state transition model. As 

a prerequisite to deploying a full neural network on the problem, proof of concept study 

was performed. In this work, smoking data collected from a smartwatch was compared to 

that of data collected from the CReSS smoking device. Of particular note, the correlation 

between the puff duration reported by CReSS and our model was 0.79 and the correlation 

of the time between puffs (inter-puff interval) was 0.73. This work has the potential to 

revolutionize the field of tobacco related research. Up to this point, to collection of this 
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level of data was only possible via laboratory settings. Smoking in this setting is seen as 

unnatural to smokers and therefore causes biases in the data collected. 

6.4 Resolving Ambiguities in Accelerometer Data Based on the Position of Smartwatch 

on Wrist  

The final objective of this part of my research was to develop a method for resolving 

the ambiguities in accelerometer data due to position on the wrist. A full description of the 

work completed can be found in section 5.4. The following is a summary of the major 

achievements. This was a very important step in processing the data for use in an ANN as 

each position of the watch on the wrist results in different signals. We defined eight distinct 

configurations of watch placement on the wrist. Instead of insisting on a particular 

configuration to be used across all users, a transformation technique was created to rotate 

data coming from all other configurations to a common reference frame for use in the ANN. 

Our results for this work indicate that for single puff detection our method had 100% 

accuracy in detecting transformed puffs. Results from detection of smoking puffs within a 

continuous smoking also showed very high success. The baseline accuracy was 73%. After 

transformation, all but two of the eight positions recorded accuracies of 73% or greater.  

6.5 Suggested Future Work 

 My suggested future work for these objectives would focus around enhanced model 

development. Although several other types of predictive models were considered at the 

beginning of development, none were investigated fully. The models used in this work 

were conventional single layer neural networks. With the recent resurgence of deep-

learning and more complicated neural networks, it should be noted that several of these 

models could hold the potential to increase the accuracy of the detection models in more 



www.manaraa.com

 190 

efficient ways. In addition, although this work has been centered on the detection of 

smoking, similar detection models could be created for other gestures (such as overeating 

and alcohol consumption) using the same methods described throughout the work.  
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Chapter 7: Conclusion 

This work was divided into two main parts that spanned the broad field of 

computational biology and bioinformatics. In part 1, it was shown that substantial 

improvement to the software package REDCRAFT, creation of the PDBMine database and 

creation of an analytic model for the characterization of protein dynamics has resulted in 

an increased capability for protein structure/dynamic calculation. Of note, this work 

presents a novel database for mining data from proteomic data as well as the first known 

theoretical model of discrete state dynamics from RDCs. In part 2 of this work, several 

novel methods for detection of smoking in real world settings was presented. These models 

showed substantial success in detection of puff-level and session-level detection of 

smoking events. In addition, a method for quantification of smoking behavior was also 

presented. This method showed significant similarity to the devices currently used in the 

field for data collection. Lastly, a method for the rotational translation of accelerometer 

data to resolve ambiguities due to the position of the watch on the wrist. These results 

represent the first published attempt to create a method for automated detection of smoking 

using smartwatch technology. 
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Appendix A: Discussion of Decimation 

Pseudocode of previous version of REDCRAFT’s decimation routine 

Given: Search_Depth: <integer> Number of structures to be propagated forward 

Score_Threshold: <float> Threshold to filter remaining angles (angstroms) 

 Cluster_Sensitivity: <float> Defines the sensitivity of clusters (angstroms) 

 Possible_Angles: <float> m by 2n matrix where n is current residue number 

and m represents the total search space for the addition of a new residue.  

 

Function Decimation(Possible_Angles) 

 New_Angles = Possible_Angles[1:Search_Depth, :] 

 Remaining_Angles = Possible_Angles[Search_Depth + 1:end, :] 

 Clusters = Cluster(Remaining_Angles, Cluster_Sensitivity) 

 For each Cluster c in Clusters s.t. c.score <= Score_Threshold 

  Centroid = ExtractCenterOfCluster(c) 

  Add Centroid to New_Angles 

 Return New_Angles 

 

 

Updates made to the Pseudocode (in bold) 

Given: Search_Depth, Cluster_Sensitivity, Possible_Angles: same as before 

Score_Threshold: <float> percentage increase from bottom score of 

New_Angles array (ranging from 0-1)  

Max_Structures: <int> limit on the maximum structures extracted  

 

Function Decimation(Possible_Angles) 

 New_Angles = Possible_Angles[1:Search_Depth, :] 

            Max_Score = New_Angles[end,:].score 

 Remaining_Angles = Possible_Angles[Search_Depth + 1:end, :] 

 Clusters = Cluster(Remaining_Angles, Cluster_Sensitivity) 

            Sort Clusters based on score (smallest to largest) 

 For each Cluster c in Clusters in the range 1:Max_Structures 

                        Break if c.score > Max_Score * Score_Threshold 

  Centroid = ExtractCenterOfCluster(c) 

  Add Centroid to New_Angles 

 Return New_Angles 
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